
BigC++Cay Horstmann

 3/e

Late
Objects

BigC++
 3/e

Late
Objects

Cay Horstmann
San Jose State University

PUBLISHER	 Laurie Rosatone
EDITORIAL DIRECTOR	 Don Fowley
DEVELOPMENTAL EDITOR	 Cindy Johnson
ASSISTANT DEVELOPMENT EDITOR	 Ryann Dannelly
EXECUTIVE MARKETING MANAGER	 Dan Sayre
SENIOR PRODUCTION EDITOR	 Laura Abrams
SENIOR CONTENT MANAGER	 Valerie Zaborski
EDITORIAL ASSISTANT	 Anna Pham
SENIOR DESIGNER	 Tom Nery
SENIOR PHOTO EDITOR	 Billy Ray
PRODUCTION MANAGEMENT	 Cindy Johnson
COVER IMAGE	 © 3alexd/Getty Images

This book was set in Stempel Garamond LT Std by Publishing Services, and printed and bound by Quad/
Graphics, Versailles. The cover was printed by Quad/Graphics, Versailles.

This book is printed on acid-free paper. ∞

Founded in 1807, John Wiley & Sons, Inc. has been a valued source of knowledge and understanding for more
than 200 years, helping people around the world meet their needs and fulfill their aspirations. Our company is
built on a foundation of principles that include responsibility to the communities we serve and where we live
and work. In 2008, we launched a Corporate Citizenship Initiative, a global effort to address the environmental,
social, economic, and ethical challenges we face in our business. Among the issues we are addressing are carbon
impact, paper specifications and procurement, ethical conduct within our business and among our vendors,
and community and charitable support. For more information, please visit our website: www.wiley.com/go/
citizenship.

Copyright © 2018, 2012, 2009 John Wiley & Sons, Inc. All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by
any means, electronic, mechanical, photocopying, recording, scanning or otherwise, except as permitted under
Sections 107 or 108 of the 1976 United States Copyright Act, without either the prior written permission of
the Publisher, or authorization through payment of the appropriate per-copy fee to the Copyright Clearance
Center, Inc. 222 Rosewood Drive, Danvers, MA 01923, website www.copyright.com. Requests to the Publisher
for permission should be addressed to the Permissions Department, John Wiley & Sons, Inc., 111 River Street,
Hoboken, NJ 07030-5774, (201) 748-6011, fax (201) 748-6008, website http://www.wiley.com/go/permissions.

Evaluation copies are provided to qualified academics and professionals for review purposes only, for use in
their courses during the next academic year. These copies are licensed and may not be sold or transferred to a
third party. Upon completion of the review period, please return the evaluation copy to Wiley. Return instruc-
tions and a free of charge return shipping label are available at www.wiley.com/go/returnlabel. If you have
chosen to adopt this textbook for use in your course, please accept this book as your complimentary desk copy.
Outside of the United States, please contact your local representative.

ISBN 13: 978-1-119-40297-8

The inside back cover will contain printing identification and country of origin if omitted from this page. In
addition, if the ISBN on the back cover differs from the ISBN on this page, the one on the back cover is correct.

Printed in the United States of America.

10 9 8 7 6 5 4 3 2 1

http://www.wiley.com/go/citizenship
http://www.copyright.com
http://www.wiley.com/go/permissions
http://www.wiley.com/go/returnlabel

PREFACE

iii

This book is an introduction to C++ and computer programming that focuses on
the essentials—and on effective learning. The book is designed to serve a wide range
of student interests and abilities and is suitable for a first course in programming for
computer scientists, engineers, and students in other disciplines. No prior program-
ming experience is required, and only a modest amount of high school algebra is
needed.

Here are the key features of this book:

Present fundamentals first.
This book uses the C++ programming language as a vehicle for introducing com-
puter science concepts. A substantial subset of the C++ language is covered, focusing
on the modern features of standard C++ that make students productive. The book
takes a traditional route, first stressing control structures, procedural decomposition,
and array algorithms. Objects are used when appropriate in the early chapters. Stu-
dents start designing and implementing their own classes in Chapter 9.

Guidance and worked examples help students succeed.
Beginning programmers often ask “How do I start? Now what do I do?” Of course,
an activity as complex as programming cannot be reduced to cookbook-style instruc-
tions. However, step-by-step guidance is immensely helpful for building confidence
and providing an outline for the task at hand. “Problem Solving” sections stress the
importance of design and planning. “How To” guides help students with common
programming tasks. Additional Worked Examples are available in the E-Text or
online.

Tip: Source files for all of the program examples in the book, including the Worked
Examples, are provided with the source code for this book. Download the files to
your computer for easy access as you work through the chapters.

Practice makes perfect.
Of course, programming students need to be able to implement nontrivial programs,
but they first need to have the confidence that they can succeed. The Enhanced E-Text
immerses students in activities designed to foster in-depth learning. Students don’t
just watch animations and code traces, they work on generating them. The activities
provide instant feedback to show students what they did right and where they need
to study more. A wealth of practice opportunities, including code completion ques-
tions and skill-oriented multiple-choice questions, appear at the end of each section,
and each chapter ends with well-crafted review exercises and programming projects.

Problem solving strategies are made explicit.
Practical, step-by-step illustrations of techniques help students devise and evaluate
solutions to programming problems. Introduced where they are most relevant, these
strategies address barriers to success for many students. Strategies included are:

•	 Algorithm Design (with pseudocode)
•	 First Do It By Hand (doing sample calculations by hand)
•	 Flowcharts

iv  Preface 

•	 Selecting Test Cases
•	 Hand-Tracing
•	 Storyboards
•	 Solve a Simpler Problem First
•	 Reusable Functions
•	 Stepwise Refinement
•	 Adapting Algorithms
•	 Discovering Algorithms by Manipulating Physical Objects
•	 Draw a Picture (pointer diagrams)
•	 Tracing Objects (identifying state and behavior)
•	 Discovering Classes
•	 Thinking Recursively
•	 Estimating the Running Time of an Algorithm

A visual approach motivates the reader and eases navigation.
Photographs present visual analogies that explain
the nature and behavior of computer concepts.
Step-by-step figures illustrate complex program
operations. Syntax boxes and example tables pres-
ent a variety of typical and special cases in a com-
pact format. It is easy to get the “lay of the land” by
browsing the visuals, before focusing on the textual
material.

Focus on the essentials while being
technically accurate.
An encyclopedic coverage is not helpful for a
beginning programmer, but neither is the oppo-
site—reducing the material to a list of simplistic bullet points. In this book, the essen-
tials are presented in digestible chunks, with separate notes that go deeper into good
practices or language features when the reader is ready for the additional information.
You will not find artificial over-simplifications that give an illusion of knowledge.

Reinforce sound engineering practices.
A multitude of useful tips on software quality and common errors encourage the
development of good programming habits. The focus is on test-driven development,
encouraging students to test their programs systematically.

Engage with optional engineering and business exercises.
End-of-chapter exercises are enhanced with problems from scientific and business
domains. Designed to engage students, the exercises illustrate the value of program-
ming in applied fields.

© Terraxplorer/iStockphoto.

Visual features help the reader
with navigation.

http://www.wiley.com/go/permissions
http://www.wiley.com/go/citizenship
http://www.copyright.com
http://www.wiley.com/go/returnlabel

Preface  v

New to This Edition

Updated for Modern Versions of C++
A number of features of the C++ 2011 and C++ 2014 standards are described either as
recommended “best practice” or as Special Topics.

New and Reorganized Topics
The book now supports two pathways into object-oriented programming and inher-
itance. Pointers and structures can be covered before introducing classes. Alterna-
tively, pointers can be deferred until after the implementation of classes.

This edition further supports a second course in computer science by adding cov-
erage of the implementation of common data structures and algorithms.

A sequence of Worked Examples and exercises introduces “media computation,”
such as generating and modifying images, sounds, and animations.

Lower-Cost, Interactive Format
This third edition is published as a lower-cost Enhanced E-Text that supports active
learning through a wealth of interactive activities. These activities engage and prepare
students for independent programming and the Review Exercises, Practice Exercises,
and Programming Projects at the end of each E-Text chapter. The Enhanced E-Text
may also be bundled with an Abridged Print Companion, which is a bound book that
contains the entire text for reference, but without exercises or practice material.

Interactive learning solutions are expanding every day, so to learn more about
these options or to explore other options to suit your needs, please contact your
Wiley account manager (www.wiley.com/go/whosmyrep) or visit the product information
page for this text on wiley.com (http://wiley.com/college/sc/horstmann).

The Enhanced E-Text is designed to enable student practice without the instructor
assigning the interactivities or recording their scores. If you are interested in assign-
ing and grading students’ work on them, ask your Wiley Account Manager about the
online course option implemented in the Engage Learning Management System. The
Engage course supports the assignment and automatic grading of the interactivities.
Engage access includes access to the Enhanced E-Text.

Features in the Enhanced E-Text
The interactive Enhanced E-Text guides students from the basics to writing complex
programs. After they read a bit, they can try all of the interactive exercises for that
section. Active reading is an engaging way for students to ensure that students are
prepared before going to class.

There five types of interactivities:

Code Walkthrough  Code Walkthrough activities ask students to trace through a
segment of code, choosing which line will be executed next and entering the new
values of variables changed by the code’s execution. This activity simulates the hand-
tracing problem solving technique taught in Chapters 3 and 4—but with immediate
feedback.

http://www.wiley.com/go/whosmyrep
http://wiley.com/college/sc/horstmann

vi  Preface 

Example Table  Example table activities make the student the active participant in
building up tables of code examples similar to those found in the book. The tables
come in many different forms. Some tables ask the student to determine the output of
a line of code, or the value of an expression, or to provide code for certain tasks. This
activity helps students assess their understanding of the reading—while it is easy to
go back and review.

Algorithm Animation  An algorithm animation shows the essential steps of an
algorithm. However, instead of passively watching, students get to predict each step.
When finished, students can start over with a different set of inputs. This is a surpris-
ingly effective way of learning and remembering algorithms.

Rearrange Code  Rearrange code activities ask the student to arrange lines of code
by dragging them from the list on the right to the area at left so that the resulting code
fulfills the task described in the problem. This activity builds facility with coding
structure and implementing common algorithms.

Object Diagram  Object diagram activities ask the student to create a memory
diagram to illustrate how variables and objects are initialized and updated as sample
code executes. The activity depicts variables, objects, and references in the same way
as the figures in the book. After an activity is completed, pressing “Play” replays the
animation. This activity goes beyond hand-tracing to illuminate what is happening in
memory as code executes.

Code Completion  Code completion activities ask the student to finish a partially-
completed program, then paste the solution into CodeCheck (a Wiley-based online
code evaluator) to learn whether it produces the desired result. Tester classes on the
CodeCheck site run and report whether the code passed the tests. This activity serves
as a skill-building lab to better prepare the student for writing programs from scratch.

 A Tour of the Book
This book is intended for a two-semester introduction to programming that may also
include algorithms and data structures. The organization of chapters offers the same
flexibility as the previous edition; dependencies among the chapters are also shown
in Figure 1.

Part A: Fundamentals (Chapters 1–8)
The first six chapters follow a traditional approach to basic programming concepts.
Students learn about control structures, stepwise refinement, and arrays. Objects are
used only for input/output and string processing. Input/output is first covered in
Chapter 2, which may be followed by an introduction to reading and writing text
files in Section 8.1.

In a course for engineers with a need for systems and embedded programming,
you will want to cover Chapter 7 on pointers. Sections 7.1 and 7.4 are sufficient for
using pointers with polymorphism in Chapter 10.

File processing is the subject of Chapter 8. Section 8.1 can be covered sooner for
an introduction to reading and writing text files. The remainder of the chapter gives
additional material for practical applications.

Preface  vii

Part B: Object-Oriented Design (Chapters 9–10)
After students have gained a solid foundation, they are ready to tackle the implemen-
tation of classes. Chapters 9 and 10 introduce the object-oriented features of C++.
Chapter 9 introduces class design and implementation. Chapter 10 covers inheritance
and polymorphism. By the end of these chapters, students will be able to implement
programs with multiple interacting classes.

Part C: Data Structures and Algorithms (Chapters 11–17)
Chapters 11–17 cover algorithms and data structures at a level suitable for begin-
ning students. Recursion, in Chapter 11, starts with simple examples and progresses

Figure 1 
Chapter Dependencies

10. Inheritance 13. Advanced
C++

11. Recursion

12. Sorting
and Searching

14. Linked Lists,
Stacks and Queues

6. Iteration

9. Classes

15. Sets, Maps
and Hash Tables

Fundamentals

Object-Oriented Design

Data Structures & Algorithms

1. Introduction

2. Fundamental
Data Types

3. Decisions

4. Loops

5. Functions

6. Arrays
and Vectors

7. Pointers 8. Streams

A gentle
introduction to recursion

is optional.
Section 8.1

contains the core
material

Sections
7.1 and 7.4 are

required

16. Trees

17. Priority
Queues and Heaps

Section 15.1
is required

http://www.wiley.com/go/whosmyrep
http://www.wiley.com/college/sc/horstmann

viii  Preface 

to meaningful applications that would be difficult to implement iteratively. Chapter
12 covers quadratic sorting algorithms as well as merge sort, with an informal intro-
duction to big-Oh notation. Chapter 13 introduces advanced C++ features that are
required for implementing data structures, including templates and memory man-
agement. Chapters 14–17 cover linear and tree-based data structures. Students learn
how to use the standard C++ library versions. They then study the implementations
of these data structures and analyze their efficiency.

Any subset of these chapters can be incorporated into a custom print version of
this text; ask your Wiley sales representative for details, or visit customselect.wiley.com
to create your custom order.

Appendices
Appendices A and B summarize C++ reserved words and operators. Appendix C
lists character escape sequences and ASCII character code values. Appendix D docu-
ments all of the library functions and classes used in this book.

Appendix E contains a programming style guide. Using a style guide for program
ming assignments benefits students by directing them toward good habits and reduc-
ing gratuitous choice. The style guide is available in electronic form on the book’s
companion web site so that instructors can modify it to reflect their preferred style.

Appendix F introduces common number systems used in computing.

Web Resources
This book is complemented by a complete suite of online resources. Go to www.wiley.
com/go/bclo3 to visit the online companion sites, which include

•	 Source code for all example programs in the book and its Worked Examples, plus
additional example programs.

•	 Worked Examples that apply the problem-solving steps in the book to other
realistic examples.

•	 Lecture presentation slides (for instructors only).
•	 Solutions to all review and programming exercises (for instructors only).
•	 A test bank that focuses on skills, not just terminology (for instructors only). This

extensive set of multiple-choice questions can be used with a word processor or
imported into a course management system.

•	 “CodeCheck” assignments that allow students to work on programming prob-
lems presented in an innovative online service and receive immediate feedback.
Instructors can assign exercises that have already been prepared, or easily add
their own. Visit http://codecheck.it to learn more.

WORKED EXAMPLE 2.1

Computing Travel Time

Learn how to develop a hand calculation to compute the time that
a robot requires to retrieve an item from rocky terrain. See your
E-Text or visit wiley.com/go/bclo3.
 Courtesy of NASA.

Pointers in the print
companion describe what
students will �nd in their
E-Text or online.

EXAMPLE CODE See how_to_1/scores_vector in your companion code for a solution using vectors instead of arrays.

http://www.wiley.com/go.bclo3
http://codecheck.it

Walkthrough  ix

A Walkthrough of the Learning Aids
The pedagogical elements in this book work together to focus on and reinforce key
concepts and fundamental principles of programming, with additional tips and detail
organized to support and deepen these fundamentals. In addition to traditional
features, such as chapter objectives and a wealth of exercises, each chapter contains
elements geared to today’s visual learner.

106 Chapter 4 Loops

4.3 The for Loop
It often happens that you want to execute a sequence of
statements a given number of times. You can use a while
loop that is controlled by a counter, as in the following
example:
counter = 1; // Initialize the counter
while (counter <= 10) // Check the counter
{
 cout << counter << endl;
 counter++; // Update the counter
}

Because this loop type is so common, there is a special
form for it, called the for loop (see Syntax 4.2).
for (counter = 1; counter <= 10; counter++)
{
 cout << counter << endl;
}

Some people call this loop count-controlled. In contrast,
the while loop of the preceding section can be called an
event-controlled loop because it executes until an event
occurs (for example, when the balance reaches the target). Another commonly-used
term for a count-controlled loop is de�nite. You know from the outset that the loop
body will be executed a de�nite number of times––ten times in our example. In con-
trast, you do not know how many iterations it takes to accumulate a target balance.
Such a loop is called inde�nite.

Syntax 4.2 for Statement

for (int i = 5; i <= 10; i++)
{
 sum = sum + i;
} This loop executes 6 times.

 See Programming Tip 4.3.

These three
expressions should be related.

 See Programming Tip 4.1.

This initialization
happens once
before the loop starts.

The loop is
executed while
this condition is true.

This update is
executed after
each iteration.

The variable i is
defined only in this

 for loop.

The for loop neatly groups the initialization, condition, and update expressions
together. However, it is important to realize that these expressions are not executed
together (see Figure 3).

© Enrico Fianchini/iStockphoto.

You can visualize the
for loop as an orderly
sequence of steps.

The for loop is
used when a
value runs from a
starting point to an
ending point with a
constant increment
or decrement.

Annotations explain
required components
and point to more information
on common errors or best practices
associated with the syntax.

Throughout each chapter,
margin notes show where
new concepts are introduced
and provide an outline of key ideas.

Annotated syntax boxes
provide a quick, visual overview
of new language constructs.

Like a variable in a computer
program, a parking space has
an identifier and contents.

Analogies to everyday objects are
used to explain the nature and behavior
of concepts such as variables, data
types, loops, and more.

http://customselect.wiley.com

x  Walkthrough 

6.5 Problem Solving: Discovering Algorithms by Manipulating Physical Objects 277

Now how does that help us with our problem, switching the first and the second
half of the array?

Let’s put the first coin into place, by swapping it with the fifth coin. However, as
C++ programmers, we will say that we swap the coins in positions 0 and 4:

Next, we swap the coins in positions 1 and 5:

HOW TO 1.1

Describing an Algorithm with Pseudocode

This is the �rst of many “How To” sections in this book that give you step-by-step proce-
dures for carrying out important tasks in developing computer programs.

Before you are ready to write a program in C++, you need to develop an algorithm—a
method for arriving at a solution for a particular problem. Describe the algorithm in pseudo-
code––a sequence of precise steps formulated in English. To illustrate, we’ll devise an algo-
rithm for this problem:

Problem Statement You have the choice of buying one
of two cars. One is more fuel ef�cient than the other, but also
more expensive. You know the price and fuel ef�ciency (in miles
per gallon, mpg) of both cars. You plan to keep the car for ten
years. Assume a price of $4 per gallon of gas and usage of 15,000
miles per year. You will pay cash for the car and not worry about
�nancing costs. Which car is the better deal?

Step 1 Determine the inputs and outputs.

In our sample problem, we have these inputs:
• purchase price1 and fuel efficiency1, the price and fuel ef�ciency (in mpg) of the �rst car
• purchase price2 and fuel efficiency2, the price and fuel ef�ciency of the second car

© dlewis33/Getty Images.

Memorable photos reinforce
analogies and help students
remember the concepts.

Problem Solving sections teach
techniques for generating ideas and
evaluating proposed solutions, often
using pencil and paper or other
artifacts. These sections emphasize
that most of the planning and problem
solving that makes students successful
happens away from the computer.

How To guides give step-by-step
guidance for common programming
tasks, emphasizing planning and
testing. They answer the beginner’s
question, “Now what do I do?” and
integrate key concepts into a
problem-solving sequence.

Worked Examples apply
the steps in the How To to
a di�erent example, showing
how they can be used to
plan, implement, and test
a solution to another
programming problem.

A recipe for a fruit pie may say to use any kind of fruit.
Here, “fruit” is an example of a parameter variable.
Apples and cherries are examples of arguments.

pie(fruit) pie(fruit)

WORKED EXAMPLE 1.1

Writing an Algorithm for Tiling a Floor

Problem Statement Your task is to tile a rectangular bathroom
oor with alternating
black and white tiles measuring 4 × 4 inches. The
oor dimensions, measured in inches, are
multiples of 4.

Step 1 Determine the inputs and outputs.

The inputs are the
oor dimensions (length × width),
measured in inches. The output is a tiled
oor.

Step 2 Break down the problem into smaller tasks.

A natural subtask is to lay one row of tiles. If you can
solve that task, then you can solve the problem by lay-
ing one row next to the other, starting from a wall, until
you reach the opposite wall.

How do you lay a row? Start with a tile at one wall.
If it is white, put a black one next to it. If it is black, put
a white one next to it. Keep going until you reach the
opposite wall. The row will contain width / 4 tiles.

Step 3 Describe each subtask in pseudocode.

© rban/iStockphoto.

Table 3 Variable Names in C++

Variable Name Comment

can_volume1 Variable names consist of letters, numbers, and the underscore
character.

x In mathematics, you use short variable names such as x or y. This is
legal in C++, but not very common, because it can make programs
harder to understand (see Programming Tip 2.1).

!
Can_volume Caution: Variable names are case sensitive. This variable name is

different from can_volume.

6pack Error: Variable names cannot start with a number.

can volume Error: Variable names cannot contain spaces.

double Error: You cannot use a reserved word as a variable name.

ltr/fl.oz Error: You cannot use symbols such as . or /

Example tables support beginners
with multiple, concrete examples.
These tables point out common
errors and present another quick
reference to the section’s topic.

http://www.wiley.com/go/bclo3
http://codecheck.it

Walkthrough  xi

Consider the function call illustrated in Figure 3:
double result1 = cube_volume(2);

• The parameter variable side_length of the cube_volume function is created. ❶
• The parameter variable is initialized with the value of the argument that was

passed in the call. In our case, side_length is set to 2. ❷
• The function computes the expression side_length * side_length * side_length,

which has the value 8. That value is stored in the variable volume. ❸
• The function returns. All of its variables are removed. The return value is trans-

ferred to the caller, that is, the function calling the cube_volume function. ❹

1 Function call result1 =

side_length =

2 Initializing function parameter variable result1 =

side_length = 2

3 About to return to the caller result1 =

side_length =

volume = 8

2

4 After function call result1 = 8

double result1 = cube_volume(2);

double volume = side_length * side_length * side_length;
return volume;

double result1 = cube_volume(2);

double result1 = cube_volume(2);

Figure 3 Parameter Passing

Progressive �gures trace code
segments to help students visualize
the program �ow. Color is used
consistently to make variables and
other elements easily recognizable.

Optional engineering exercises
engage students with applications
from technical �elds. Engineering P7.12 Write a program that simulates the control

software for a “people mover” system, a set of
driverless trains that move in two concentric
circular tracks. A set of switches allows trains
to switch tracks.
In your program, the outer and inner tracks
should each be divided into ten segments.
Each track segment can contain a train that
moves either clockwise or counterclockwise.
A train moves to an adjacent segment in its track or, if that segment is occupied, to
the adjacent segment in the other track.
Define a Segment structure. Each segment has a pointer to the next and previous
segments in its track, a pointer to the next and previous seg ments in the other track,

Additional example programs
are provided with the companion
code for students to read, run,
and modify.

for (counter = 1; counter <= 10; counter++)
{
 cout << counter << endl;
}

Initialize counter1

for (counter = 1; counter <= 10; counter++)
{
 cout << counter << endl;
}

Check condition2

for (counter = 1; counter <= 10; counter++)
{
 cout << counter << endl;
}

Execute loop body3

for (counter = 1; counter <= 10; counter++)
{
 cout << counter << endl;
}

Update counter4

for (counter = 1; counter <= 10; counter++)
{
 cout << counter << endl;
}

Check condition again5

counter = 1

counter = 1

counter = 1

counter = 2

counter = 2

Figure 3 Execution of a for Loop

sec02/cube.cpp

1 #include <iostream>
2
3 using namespace std;
4
5 /**
6 Computes the volume of a cube.
7 @param side_length the side length of the cube
8 @return the volume
9 */

10 double cube_volume(double side_length)
11 {
12 double volume = side_length * side_length * side_length;
13 return volume;
14 }
15
16 int main()
17 {
18 double result1 = cube_volume(2);
19 double result2 = cube_volume(10);
20 cout << "A cube with side length 2 has volume " << result1 << endl;
21 cout << "A cube with side length 10 has volume " << result2 << endl;
22
23 return 0;
24 }

Program Run

A cube with side length 2 has volume 8
A cube with side length 10 has volume 1000

Program listings are carefully
designed for easy reading,
going well beyond simple
color coding. Functions are set
o� by a subtle outline.

EXAMPLE CODE See sec04 of your companion code for another implementation of the earthquake program that you
saw in Section 3.3. Note that the get_description function has multiple return statements.

xii  Walkthrough 

Programming Tip 3.6

Hand-Tracing

A very useful technique for understanding whether a program
works correctly is called hand-tracing. You simulate the pro-
gram’s activity on a sheet of paper. You can use this method with
pseudocode or C++ code.

Get an index card, a cocktail napkin, or whatever sheet of
paper is within reach. Make a column for each variable. Have the
program code ready. Use a marker, such as a paper clip, to mark
the current statement. In your mind, execute statements one at a
time. Every time the value of a variable changes, cross out the old
value and write the new value below the old one.

For example, let’s trace the tax program with the data from the
program run in Section 3.4. In lines 13 and 14, tax1 and tax2 are
initialized to 0.
6 int main()
7 {
8 const double RATE1 = 0.10;
9 const double RATE2 = 0.25;

10 const double RATE1_SINGLE_LIMIT = 32000;
11 const double RATE1_MARRIED_LIMIT = 64000;
12
13 double tax1 = 0;
14 double tax2 = 0;
15

In lines 18 and 22, income and marital_status are initialized by input statements.
16 double income;
17 cout << "Please enter your income: ";
18 cin >> income;
19
20 cout << "Please enter s for single, m for married: ";
21 string marital_status;
22 cin >> marital_status;
23

Because marital_status is not "s", we move to the else
branch of the outer if statement (line 36).
24 if (marital_status == "s")
25 {
26 if (income <= RATE1_SINGLE_LIMIT)
27 {
28 tax1 = RATE1 * income;
29 }
30 else
31 {
32 tax1 = RATE1 * RATE1_SINGLE_LIMIT;

© thomasd007/iStockphoto.

Hand-tracing helps you
understand whether a
program works correctly.

 marital
 tax1 tax2 income status

 0 0

 marital
 tax1 tax2 income status

 0 0 80000 m

Common Error 2.1

Using Unde�ned Variables

You must de�ne a variable before you use it for the �rst time. For example, the following
sequence of statements would not be legal:

double can_volume = 12 * liter_per_ounce;
double liter_per_ounce = 0.0296;

In your program, the statements are compiled in order. When the compiler reaches the �rst
statement, it does not know that liter_per_ounce will be de�ned in the next line, and it reports
an error.

Special Topics present optional
topics and provide additional
explanation of others.

Common Errors describe the kinds
of errors that students often make,
with an explanation of why the errors
occur, and what to do about them.

Programming Tips explain
good programming practices,
and encourage students to be
more productive with tips and
techniques such as hand-tracing.

Special Topic 6.5

The Range-Based for Loop

C++ 11 introduces a convenient syntax for visiting all elements in a “range” or sequence of ele-
ments. This loop displays all elements in a vector:

vector<int> values = {1, 4, 9, 16, 25, 36};
for (int v : values)
{
 cout << v << " ";
}

In each iteration of the loop, v is set to an element of the vector. Note that you do not use an
index variable. The value of v is the element, not the index of the element.

If you want to modify elements, declare the loop variable as a reference:

for (int& v : values)
{
 v++;
}

This loop increments all elements of the vector.
You can use the reserved word auto, which was introduced in Special Topic 2.3, for the type

of the element variable:

for (auto v : values) { cout << v << " "; }

The range-based for loop also works for arrays:

int primes[] = { 2, 3, 5, 7, 11, 13 };
for (int p : primes)
{
 cout << p << " ";
}

The range-based for loop is a convenient shortcut for visiting or updating all elements of a
vector or an array. This book doesn’t use it because one can achieve the same result by looping
over index values. But if you like the more concise form, and use C++ 11 or later, you should
certainly consider using it.

EXAMPLE CODE See special_topic_5 of your companion code for a program that demonstrates the range-based
for loop.

Computing & Society 7.1 Embedded Systems

An embedded sys-
tem is a computer

system that controls a device. The
device con tains a processor and other
hardware and is controlled by a com-
puter pro gram. Unlike a personal
computer, which has been designed
to be �exi ble and run many di�erent
computer programs, the hardware
and software of an embedded system
are tailored to a speci�c device. Com-
puter controlled devices are becom-
ing increasingly common, ranging
from washing machines to medical
equipment, cell phones, automobile
engines, and spacecraft.

Several challenges are speci�c to
programming embedded systems.
Most importantly, a much higher stan-
dard of quality control applies. Ven-
dors are often unconcerned about
bugs in personal computer software,
because they can always make you
install a patch or upgrade to the next
version. But in an embedded system,
that is not an option. Few consumers

would feel comfortable upgrading the
software in their washing machines
or automobile engines. If you ever
handed in a programming assign ment
that you believed to be correct, only to
have the instructor or grader �nd bugs
in it, then you know how hard it is to
write software that can reliably do its
task for many years without a chance
of changing it. Qual ity standards are
especially important in devices whose
failure would destroy property or
endanger human life. Many personal
computer purchas ers buy computers
that are fast and have a lot of stor-
age, because the investment is paid
back over time when many programs
are run on the same equipment. But
the hardware for an embedded device
is not shared––it is dedicated to one
device. A separate processor, memory,
and so on, are built for every copy of
the device. If it is possible to shave a
few pennies o� the manufacturing
cost of every unit, the savings can add
up quickly for devices that are pro-

duced in large volumes. Thus, the pro-
grammer of an embed ded system has
a much larger economic incentive to
conserve resources than the desktop
software programmer. Unfortunately,
try ing to conserve resources usually
makes it harder to write programs that
work correctly.

C and C++ are commonly used
lan guages for developing embedded
sys tems.

© Courtesy of Professor Prabal Dutta.

The Controller of an Embedded System

Computing & Society presents social
and historical topics on computing—for
interest and to ful�ll the “historical and
social context” requirements of the
ACM/IEEE curriculum guidelines.

Walkthrough  xiii

Interactive activities in the E-Text
engage students in active reading as they…

Trace through a code segment

Build an example table

Explore common algorithms

Arrange code to ful�ll a task

Create a memory diagramComplete a program and
get immediate feedback

Acknowledgments  xv

Acknowledgments
Many thanks to Don Fowley, Graig Donini, Dan Sayre, Ryann Dannelly, David
Dietz, Laura Abrams, and Billy Ray at John Wiley & Sons for their help with this
project. An especially deep acknowledgment and thanks goes to Cindy Johnson for
her hard work, sound judgment, and amazing attention to detail.

I am grateful to Mark Atkins, Ivy Technical College, Katie Livsie, Gaston College,
Larry Morell, Arkansas Tech University, and Rama Olson, Gaston College, for
their contributions to the supplemental material. Special thanks to Stephen Gilbert,
Orange Coast Community College, for his help with the interactive exercises.

Every new edition builds on the suggestions and experiences of new and prior
reviewers, contributors, and users. We are very grateful to the individuals who pro-
vided feedback, reviewed the manuscript, made valuable suggestions and contribu-
tions, and brought errors and omissions to my attention. They include:

Charles D. Allison, Utah Valley State College
Fred Annexstein, University of Cincinnati
Mark Atkins, Ivy Technical College
Stefano Basagni, Northeastern University
Noah D. Barnette, Virginia Tech
Susan Bickford, Tallahassee Community College
Ronald D. Bowman, University of Alabama, Huntsville
Robert Burton, Brigham Young University
Peter Breznay, University of Wisconsin, Green Bay
Richard Cacace, Pensacola Junior College, Pensacola
Kuang-Nan Chang, Eastern Kentucky University
Joseph DeLibero, Arizona State University
Subramaniam Dharmarajan, Arizona State University
Mary Dorf, University of Michigan
Marty Dulberg, North Carolina State University
William E. Duncan, Louisiana State University
John Estell, Ohio Northern University
Waleed Farag, Indiana University of Pennsylvania
Evan Gallagher, Polytechnic Institute of New York University
Stephen Gilbert, Orange Coast Community College
Kenneth Gitlitz, New Hampshire Technical Institute
Daniel Grigoletti, DeVry Institute of Technology, Tinley Park
Barbara Guillott, Louisiana State University
Charles Halsey, Richland College
Jon Hanrath, Illinois Institute of Technology
Neil Harrison, Utah Valley University
Jurgen Hecht, University of Ontario
Steve Hodges, Cabrillo College

xvi  Acknowledgments 

Jackie Jarboe, Boise State University
Debbie Kaneko, Old Dominion University
Mir Behrad Khamesee, University of Waterloo
Sung-Sik Kwon, North Carolina Central University
Lorrie Lehman, University of North Carolina, Charlotte
Cynthia Lester, Tuskegee University
Yanjun Li, Fordham University
W. James MacLean, University of Toronto
LindaLee Massoud, Mott Community College
Adelaida Medlock, Drexel University
Charles W. Mellard, DeVry Institute of Technology, Irving
Larry Morell, Arkansas Tech University
Ethan V. Munson, University of Wisconsin, Milwaukee
Arun Ravindran, University of North Carolina at Charlotte
Philip Regalbuto, Trident Technical College
Don Retzlaff, University of North Texas
Jeff Ringenberg, University of Michigan, Ann Arbor
John P. Russo, Wentworth Institute of Technology
Kurt Schmidt, Drexel University
Brent Seales, University of Kentucky
William Shay, University of Wisconsin, Green Bay
Michele A. Starkey, Mount Saint Mary College
William Stockwell, University of Central Oklahoma
Jonathan Tolstedt, North Dakota State University
Boyd Trolinger, Butte College
Muharrem Uyar, City College of New York
Mahendra Velauthapillai, Georgetown University
Kerstin Voigt, California State University, San Bernardino
David P. Voorhees, Le Moyne College
Salih Yurttas, Texas A&M University

A special thank you to all of our class testers:

Pani Chakrapani and the students of the University of Redlands
Jim Mackowiak and the students of Long Beach City College, LAC
Suresh Muknahallipatna and the students of the University of Wyoming
Murlidharan Nair and the students of the Indiana University of South Bend
Harriette Roadman and the students of New River Community College
David Topham and the students of Ohlone College
Dennie Van Tassel and the students of Gavilan College

CONTENTS

xvii

PREFACE  iii

SPECIAL FEATURES  xxiv

INTRODUCTION  1

1.1	 What Is Programming?   2

1.2	 The Anatomy of a Computer   3
C&S	 Computers Are Everywhere  5

1.3	 Machine Code and Programming
Languages   5
C&S	 Standards Organizations  7

1.4	 Becoming Familiar with Your
Programming Environment   7
PT 1	 Backup Copies  10

1.5	 Analyzing Your First Program   11
CE 1	 Omitting Semicolons  13

ST 1	 Escape Sequences  13

1.6	 Errors   14
CE 2	 Misspelling Words  15

1.7	 PROBLEM SOLVING  Algorithm Design   16

The Algorithm Concept   16
An Algorithm for Solving an Investment
Problem   17
Pseudocode   18
From Algorithms to Programs   19

HT 1	 Describing an Algorithm with
Pseudocode  19

WE 1	 Writing an Algorithm for Tiling a Floor  21

FUNDAMENTAL DATA
TYPES  25

2.1	 Variables   26

Variable Definitions   26
Number Types   28
Variable Names    29
The Assignment Statement   30
Constants   31
Comments   31

CE 1	 Using Undefined Variables  33

CE 2	 Using Uninitialized Variables  33

PT 1	 Choose Descriptive Variable Names  33

PT 2	 Do Not Use Magic Numbers  34

ST 1	 Numeric Types in C++  34

ST 2	 Numeric Ranges and Precisions  35

ST 3	 Defining Variables with auto  35

2.2	 Arithmetic   36

Arithmetic Operators   36
Increment and Decrement   36
Integer Division and Remainder   36
Converting Floating-Point Numbers to
Integers   37
Powers and Roots   38

CE 3	 Unintended Integer Division  39

CE 4	 Unbalanced Parentheses  40

CE 5	 Forgetting Header Files  40

CE 6	 Roundoff Errors  41

PT 3	 Spaces in Expressions  42

ST 4	 Casts  42

ST 5	 Combining Assignment and Arithmetic  42

C&S	 The Pentium Floating-Point Bug  43

2.3	 Input and Output   44

Input   44
Formatted Output   45

2.4	 PROBLEM SOLVING  First Do It By Hand   47
WE 1	 Computing Travel Time  48

HT 1	 Carrying out Computations  48

WE 2	 Computing the Cost of Stamps  51

2.5	 Strings   51

The string Type   51
Concatenation   52
String Input   52
String Functions   52

C&S	 International Alphabets and Unicode  55

DECISIONS  59

3.1	 The if Statement   60
CE 1	 A Semicolon After the if Condition  63

PT 1	 Brace Layout  63

PT 2	 Always Use Braces  64

PT 3	 Tabs  64

PT 4	 Avoid Duplication in Branches  65

ST 1	 The Conditional Operator  65

1

2

3

xviii  Contents 

3.2	 Comparing Numbers and Strings   66
CE 2	 Confusing = and == 68

CE 3	 Exact Comparison of Floating-Point
Numbers  68

PT 5	 Compile with Zero Warnings  69

ST 2	 Lexicographic Ordering of Strings  69

HT 1	 Implementing an if Statement   70

WE 1	 Extracting the Middle  72

C&S	 Dysfunctional Computerized Systems  72

3.3	 Multiple Alternatives   73
ST 3	 The switch Statement  75

3.4	 Nested Branches   76
CE 4	 The Dangling else Problem  79

PT 6	 Hand-Tracing  79

3.5	 PROBLEM SOLVING  Flowcharts   81

3.6	 PROBLEM SOLVING  Test Cases   83
PT 7	 Make a Schedule and Make Time for

Unexpected Problems  84

3.7	 Boolean Variables and Operators   85
CE 5	 Combining Multiple Relational Operators  88

CE 6	 Confusing && and || Conditions  88

ST 4	 Short-Circuit Evaluation of Boolean
Operators  89

ST 5	 De Morgan’s Law  89

3.8	 APPLICATION  Input Validation   90
C&S	 Artificial Intelligence  92

LOOPS  95

4.1	 The while Loop   96
CE 1	 Infinite Loops  100

CE 2	 Don’t Think “Are We There Yet?”  101

CE 3	 Off-by-One Errors  101

C&S	 The First Bug  102

4.2	 PROBLEM SOLVING  Hand-Tracing   103

4.3	 The for Loop   106
PT 1	 Use for Loops for Their Intended

Purpose Only  109

PT 2	 Choose Loop Bounds That Match
Your Task  110

PT 3	 Count Iterations  110

4.4	 The do Loop   111
PT 4	 Flowcharts for Loops  111

4.5	 Processing Input   112

Sentinel Values   112
Reading Until Input Fails   114

ST 1	 Clearing the Failure State  115

ST 2	 The Loop-and-a-Half Problem and the
break Statement  116

ST 3	 Redirection of Input and Output  116

4.6	 PROBLEM SOLVING  Storyboards   117

4.7	 Common Loop Algorithms   119

Sum and Average Value   119
Counting Matches   120
Finding the First Match   120
Prompting Until a Match is Found   121
Maximum and Minimum   121
Comparing Adjacent Values   122

HT 1	 Writing a Loop  123

WE 1	 Credit Card Processing  126

4.8	 Nested Loops   126
WE 2	 Manipulating the Pixels in an Image  129

4.9	 PROBLEM SOLVING  Solve a Simpler
Problem First   130

4.10	 Random Numbers and Simulations   134

Generating Random Numbers   134
Simulating Die Tosses   135
The Monte Carlo Method   136

C&S	 Digital Piracy  138

FUNCTIONS  141

5.1	 Functions as Black Boxes   142

5.2	 Implementing Functions   143
PT 1	 Function Comments  146

5.3	 Parameter Passing   146
PT 2	 Do Not Modify Parameter Variables  148

5.4	 Return Values   148
CE 1	 Missing Return Value   149

ST 1	 Function Declarations  150

HT 1	 Implementing a Function   151

WE 1	 Generating Random Passwords  152

WE 2	 Using a Debugger  152

5.5	 Functions Without Return Values   153

5.6	 PROBLEM SOLVING  Reusable Functions   154

4 5

Contents  xix

5.7	 PROBLEM SOLVING  Stepwise
Refinement   156
PT 3	 Keep Functions Short   161

PT 4	 Tracing Functions  161

PT 5	 Stubs  162

WE 3	 Calculating a Course Grade  163

5.8	 Variable Scope and Global Variables   163
PT 6	 Avoid Global Variables  165

5.9	 Reference Parameters   165
PT 7	 Prefer Return Values to Reference

Parameters  169

ST 2	 Constant References   170

5.10	 Recursive Functions (Optional)   170
HT 2	 Thinking Recursively  173

C&S	 The Explosive Growth of Personal
Computers  174

ARRAYS AND VECTORS  179

6.1	 Arrays   180

Defining Arrays   180
Accessing Array Elements   182
Partially Filled Arrays   183

CE 1	 Bounds Errors  184

PT 1	 Use Arrays for Sequences of Related
Values  184

C&S	 Computer Viruses  185

6.2	 Common Array Algorithms   185

Filling   186
Copying    186
Sum and Average Value   186
Maximum and Minimum   187
Element Separators   187
Counting Matches   187
Linear Search   188
Removing an Element   188
Inserting an Element   189
Swapping Elements   190
Reading Input   191

ST 1	 Sorting with the C++ Library  192

ST 2	 A Sorting Algorithm  192

ST 3	 Binary Search  193

6.3	 Arrays and Functions   194
ST 4	 Constant Array Parameters  198

6.4	 PROBLEM SOLVING  Adapting
Algorithms   198
HT 1	 Working with Arrays  200

WE 1	 Rolling the Dice  203

6.5	 PROBLEM SOLVING  Discovering Algorithms by
Manipulating Physical Objects   203

6.6	 Two-Dimensional Arrays   206

Defining Two-Dimensional Arrays   207
Accessing Elements   207
Locating Neighboring Elements   208
Computing Row and Column Totals   208
Two-Dimensional Array Parameters   210

CE 2	 Omitting the Column Size of a Two-
Dimensional Array Parameter  212

WE 2	 A World Population Table  213

6.7	 Vectors   213

Defining Vectors   214
Growing and Shrinking Vectors   215
Vectors and Functions   216
Vector Algorithms   216
Two-Dimensional Vectors   218

PT 2	 Prefer Vectors over Arrays  219

ST 5	 The Range-Based for Loop  219

POINTERS AND
STRUCTURES  223

7.1	 Defining and Using Pointers   224

Defining Pointers   224
Accessing Variables Through Pointers   225
Initializing Pointers   227

CE 1	 Confusing Pointers with the Data to Which
They Point  228

PT 1	 Use a Separate Definition for Each Pointer
Variable  229

ST 1	 Pointers and References  229

7.2	 Arrays and Pointers   230

Arrays as Pointers    230
Pointer Arithmetic   230
Array Parameter Variables Are Pointers   232

ST 2	 Using a Pointer to Step Through
an Array   233

CE 2	 Returning a Pointer to a Local Variable  234

PT 2	 Program Clearly, Not Cleverly  234

ST 3	 Constant Pointers  235

6

7

xx  Contents 

7.3	 C and C++ Strings   235

The char Type   235
C Strings   236
Character Arrays   237
Converting Between C and C++ Strings   237
C++ Strings and the [] Operator   238

ST 4	 Working with C Strings  238

7.4	 Dynamic Memory Allocation   240
CE 3	 Dangling Pointers  242

CE 4	 Memory Leaks  243

7.5	 Arrays and Vectors of Pointers   243

7.6	 PROBLEM SOLVING  Draw a Picture   246
HT 1	 Working with Pointers  248

WE 1	 Producing a Mass Mailing  249

C&S	 Embedded Systems  250

7.7	 Structures   250

Structured Types   250
Structure Assignment and Comparison   251
Functions and Structures   252
Arrays of Structures   252
Structures with Array Members   253
Nested Structures   253

7.8	 Pointers and Structures   254

Pointers to Structures   254
Structures with Pointer Members   255

ST 5	 Smart Pointers  256

STREAMS  259

8.1	 Reading and Writing Text Files   260

Opening a Stream   260
Reading from a File   261
Writing to a File   262
A File Processing Example   262

8.2	 Reading Text Input   265

Reading Words   265
Reading Characters   266
Reading Lines   267

CE 1	 Mixing >> and getline Input  268

ST 1	 Stream Failure Checking  269

8.3	 Writing Text Output   270
ST 2	 Unicode, UTF-8, and C++ Strings  272

8.4	 Parsing and Formatting Strings   273

8.5	 Command Line Arguments   274
C&S	 Encryption Algorithms  277

HT 1	 Processing Text Files  278

WE 1	 Looking for for Duplicates  281

8.6	 Random Access and Binary Files   281

Random Access   281
Binary Files   282
Processing Image Files   282

C&S	 Databases and Privacy  286

CLASSES  289

9.1	 Object-Oriented Programming   290

9.2	 Implementing a Simple Class   292

9.3	 Specifying the Public Interface of
a Class   294
CE 1	 Forgetting a Semicolon  296

9.4	 Designing the Data Representation   297

9.5	 Member Functions   299

Implementing Member Functions   299
Implicit and Explicit Parameters   299
Calling a Member Function from a
Member Function   301

PT 1	 All Data Members Should Be Private; Most
Member Functions Should Be Public  303

PT 2	 const Correctness  303

9.6	 Constructors   304
CE 2	 Trying to Call a Constructor  306

ST 1	 Overloading  306

ST 2	 Initializer Lists  307

ST 3	 Universal and Uniform Initialization
Syntax  308

9.7	 PROBLEM SOLVING  Tracing Objects   308
HT 1	 Implementing a Class  310

WE 1	 Implementing a Bank Account Class  314

C&S	 Electronic Voting Machines  314

9.8	 PROBLEM SOLVING  Discovering
Classes   315
PT 3	 Make Parallel Vectors into Vectors of

Objects  317

9.9	 Separate Compilation   318

9.10	 Pointers to Objects   322

Dynamically Allocating Objects   322
The -> Operator   323
The this Pointer   324

8

9

Contents  xxi

9.11	 PROBLEM SOLVING  Patterns for
Object Data   324

Keeping a Total   324
Counting Events   325
Collecting Values   326
Managing Properties of an Object   326
Modeling Objects with Distinct States   327
Describing the Position of an Object   328

C&S	 Open Source and Free Software  329

INHERITANCE  333

10.1	 Inheritance Hierarchies   334

10.2	 Implementing Derived Classes   338
CE 1	 Private Inheritance  341

CE 2	 Replicating Base-Class Members  341

PT 1	 Use a Single Class for Variation in Values,
Inheritance for Variation in Behavior  342

ST 1	 Calling the Base-Class Constructor  342

10.3	 Overriding Member Functions   343
CE 3	 Forgetting the Base-Class Name  345

10.4	 Virtual Functions and Polymorphism   346

The Slicing Problem   346
Pointers to Base and Derived Classes   347
Virtual Functions   348
Polymorphism   349

PT 2	 Don’t Use Type Tags  352

CE 4	 Slicing an Object  352

CE 5	 Failing to Override a Virtual Function  353

ST 2	 Virtual Self-Calls  354

HT 1	 Developing an Inheritance Hierarchy  354

WE 1	 Implementing an Employee Hierarchy for
Payroll Processing  359

C&S	 Who Controls the Internet?  360

RECURSION  363

11.1	 Triangle Numbers  364
CE 1	 Tracing Through Recursive Functions  367

CE 2	 Infinite Recursion  368

HT 1	 Thinking Recursively  369

WE 1	 Finding Files  372

11.2	 Recursive Helper Functions  372

11.3	 The Efficiency of Recursion  373

11.4	 Permutations  377

11.5	 Mutual Recursion  380

11.6	 Backtracking  383
WE 2	 Towers of Hanoi  389

C&S	 The Limits of Computation  390

SORTING AND
SEARCHING  393

12.1	 Selection Sort  394

12.2	 Profiling the Selection Sort Algorithm  397

12.3	 Analyzing the Performance of the Selection
Sort Algorithm  398
ST 1	 Oh, Omega, and Theta  399

ST 2	 Insertion Sort  400

12.4	 Merge Sort  402

12.5	 Analyzing the Merge Sort Algorithm  405
ST 3	 The Quicksort Algorithm  407

12.6	 Searching  408

Linear Search   408
Binary Search   410

PT 1	 Library Functions for Sorting and
Binary Search  412

ST 4	 Defining an Ordering for Sorting
Objects  413

12.7	 PROBLEM SOLVING  Estimating the Running
Time of an Algorithm  413

Linear Time   413
Quadratic Time   414
The Triangle Pattern   415
Logarithmic Time   417

WE 1	 Enhancing the Insertion Sort Algorithm  418

C&S	 The First Programmer   418

ADVANCED C++  421

13.1	 Operator Overloading  422

Operator Functions   422
Overloading Comparison Operators   425
Input and Output   425
Operator Members   426

ST 1	 Overloading Increment and Decrement
Operators  427

ST 2	 Implicit Type Conversions  428

ST 3	 Returning References  429

WE 1	 A Fraction Class  430

10

11

12

13

xxii  Contents 

13.2	 Automatic Memory Management  430

Constructors That Allocate Memory   430
Destructors   432
Overloading the Assignment Operator   433
Copy Constructors   437

PT 1	 Use Reference Parameters To
Avoid Copies  441

CE 1	 Defining a Destructor Without the Other Two
Functions of the “Big Three”  442

ST 4	 Virtual Destructors  443

ST 5	 Suppressing Automatic Generation of
Memory Management Functions  443

ST 6	 Move Operations  444

ST 7	 Shared Pointers  445

WE 2	 Tracing Memory Management
of Strings  446

13.3	 Templates  446

Function Templates   447
Class Templates   448

ST 8	 Non-Type Template Parameters  450

LINKED LISTS, STACKS, AND
QUEUES  453

14.1	 Using Linked Lists  454

14.2	 Implementing Linked Lists  459

The Classes for Lists, Node, and Iterators   459
Implementing Iterators   460
Implementing Insertion and Removal   462

WE 1	 Implementing a Linked List Template  472

14.3	 The Efficiency of List, Array, and Vector
Operations  472

14.4	 Stacks and Queues  476

14.5	 Implementing Stacks and Queues  479

Stacks as Linked Lists   479
Stacks as Arrays   482
Queues as Linked Lists   482
Queues as Circular Arrays   483

14.6	 Stack and Queue Applications  484

Balancing Parentheses   484
Evaluating Reverse Polish Expressions   485
Evaluating Algebraic Expressions   487
Backtracking   490

ST 1	 Reverse Polish Notation  492

SETS, MAPS, AND HASH
TABLES  495

15.1	 Sets  496

15.2	 Maps  499
PT 1	 Use the auto Type for Iterators  503

ST 1	 Multisets and Multimaps  503

WE 1	 Word Frequency  504

15.3	 Implementing a Hash Table  504

Hash Codes   504
Hash Tables   505
Finding an Element   507
Adding and Removing Elements   508
Iterating over a Hash Table   508

ST 2	 Implementing Hash Functions  514

ST 3	 Open Addressing  516

TREE STRUCTURES  519

16.1	 Basic Tree Concepts  520

16.2	 Binary Trees  524

Binary Tree Examples   524
Balanced Trees   526
A Binary Tree Implementation   527

WE 1	 Building a Huffman Tree  528

16.3	 Binary Search Trees  528

The Binary Search Property   529
Insertion   530
Removal   532
Efficiency of the Operations   533

16.4	 Tree Traversal  538

Inorder Traversal   539
Preorder and Postorder Traversals   540
The Visitor Pattern   541
Depth-First and Breadth-First Search   542
Tree Iterators   543

16.5	 Red-Black Trees  544

Basic Properties of Red-Black Trees   544
Insertion   546
Removal   548

WE 2	 Implementing a Red-Black Tree  551

14

15

16

Contents  xxiii

PRIORITY QUEUES AND
HEAPS  553

17.1	 Priority Queues  554
WE 1	 Simulating a Queue of Waiting

Customers  557

17.2	 Heaps  557

17.3	 The Heapsort Algorithm  567

Appendix A	 RESERVED WORD SUMMARY   A-1

Appendix B	 OPERATOR SUMMARY   A-3

Appendix C	 CHARACTER CODES   A-5

Appendix D	 C++ LIBRARY SUMMARY   A-8

Appendix E	 C++ LANGUAGE CODING
GUIDELINES   A-12

Appendix F	 NUMBER SYSTEMS AND BIT AND SHIFT
OPERATIONS   A-19

GLOSSARY   G-1

INDEX   I-1

CREDITS   C-1

QUICK REFERENCE   C-2

ALPHABETICAL LIST OF   SYNTAX BOXES
Assignment   30

C++ Program   12
Class Definition   295
Class Template   449
Comparisons   67
Constructor with Base-Class Initializer   342
Copy Constructor   440

Defining an Array   181
Defining a Structure   251
Defining a Vector   213
Derived-Class Definition   340
Destructor Definition   433
Dynamic Memory Allocation   240

for Statement   106
Function Definition   145
Function Template   448

if Statement   61
Input Statement   44

Member Function Definition   301

Output Statement   13
Overloaded Assignment Operator   437
Overloaded Operator Definition   424

Pointer Syntax   226

Two-Dimensional Array Definition   207

Variable Definition   27

while Statement   97
Working with File Streams   262

17

xxiv  Special Features

© Steve Simzer/iStockphoto.

CHAPTER

© Scott Harms/iStockphoto.
© Tom Horyn/iStockphoto.

Common
Errors

How Tos
 and

Worked Examples

1	 Introduction Omitting Semicolons	 13

Misspelling Words	 15

Describing an Algorithm
with Pseudocode	 19

Writing an Algorithm for
Tiling a Floor	 21

2	Fundamental
Data Types

Using Undefined Variables	 33

Using Uninitialized Variables	 33

Unintended Integer Division	 39

Unbalanced Parentheses	 40

Forgetting Header Files	 40

Roundoff Errors	 41

Computing Travel Time	 48

Carrying out Computations	 48

Computing the Cost of Stamps	 51

3	Decisions A Semicolon After the if
Condition	 63

Confusing = and ==	 68

Exact Comparison of
Floating-Point Numbers	 68

The Dangling else Problem	 79

Combining Multiple
Relational Operators	 88

Confusing && and || Conditions	 88

Implementing an if Statement 	 70

Extracting the Middle	 72

4	Loops Infinite Loops	 100

Don’t Think “Are We There Yet?”	 101

Off-by-One Errors	 101

Writing a Loop	 123

Credit Card Processing	 126

Manipulating the Pixels
in an Image	 129

5	Functions Missing Return Value 	 149 Implementing a Function 	 151

Generating Random Passwords	 152

Using a Debugger	 152

Calculating a Course Grade	 163

Thinking Recursively	 173

Special Features  xxv

© MacDaddy/Dreamstime.com. © Nathan Winter/iStockphoto. © Mishella/Dreamstime.com.

Programming
Tips Special Topics Computing &

Society

Backup Copies	 10 Escape Sequences	 13 Computers Are Everywhere	 5

Standards Organizations	 7

Choose Descriptive
Variable Names	 33

Do Not Use Magic Numbers	 34

Spaces in Expressions	 42

Numeric Types in C++	 34

Numeric Ranges and Precisions	 35

Defining Variables with auto	 35

Casts	 42

Combining Assignment and
Arithmetic	 42

The Pentium Floating-Point Bug	 43

International Alphabets
and Unicode	 55

Brace Layout	 63

Always Use Braces	 64

Tabs	 64

Avoid Duplication in Branches	 65

Compile with Zero Warnings	 69

Hand-Tracing	 79

Make a Schedule and Make Time
for Unexpected Problems	 84

The Conditional Operator	 65

Lexicographic Ordering
of Strings	 69

The switch Statement	 75

Short-Circuit Evaluation of
Boolean Operators	 89

De Morgan’s Law	 89

Dysfunctional Computerized
Systems	 72

Artificial Intelligence	 92

Use for Loops for Their
Intended Purpose Only	 109

Choose Loop Bounds That
Match Your Task	 110

Count Iterations	 110

Flowcharts for Loops	 111

Clearing the Failure State	 115

The Loop-and-a-Half Problem
and the break Statement	 116

Redirection of Input and Output	 116

The First Bug	 102

Digital Piracy	 138

Function Comments	 146

Do Not Modify Parameter
Variables	 148

Keep Functions Short 	 161

Tracing Functions	 161

Stubs	 162

Avoid Global Variables	 165

Prefer Return Values to
Reference Parameters	 169

Function Declarations	 150

Constant References 	 170

The Explosive Growth of
Personal Computers	 174

xxvi  Special Features

© Steve Simzer/iStockphoto.

CHAPTER

© Scott Harms/iStockphoto.
© Tom Horyn/iStockphoto.

Common
Errors

How Tos
 and

Worked Examples

6	Arrays and Vectors Bounds Errors	 184

Omitting the Column Size of
a Two-Dimensional
Array Parameter	 212

Working with Arrays	 200

Rolling the Dice	 203

A World Population Table	 213

7	Pointers and Structures Confusing Pointers with the
Data to Which They Point	 228

Returning a Pointer to a
Local Variable	 234

Dangling Pointers	 242

Memory Leaks	 243

Working with Pointers	 248

Producing a Mass Mailing	 249

8	Streams Mixing >> and getline Input	 268 Processing Text Files	 278

Looking for for Duplicates	 281

9	Classes Forgetting a Semicolon	 296

Trying to Call a Constructor	 306

Implementing a Class	 310

Implementing a Bank
Account Class	 314

10	 Inheritance Private Inheritance	 341

Replicating Base-Class
Members	 341

Forgetting the Base-Class Name	 345

Slicing an Object	 352

Failing to Override a
Virtual Function	 353

Developing an Inheritance
Hierarchy	 354

Implementing an Employee
Hierarchy for Payroll
Processing	 359

Programming
Tips Special Topics Computing &

Society

Use Arrays for Sequences
of Related Values	 184

Prefer Vectors over Arrays	 219

Sorting with the C++ Library	 192

A Sorting Algorithm	 192

Binary Search	 193

Constant Array Parameters	 198

The Range-Based for Loop	 219

Computer Viruses	 185

Use a Separate Definition
for Each Pointer Variable	 229

Program Clearly, Not Cleverly	 234

Pointers and References	 229

Using a Pointer to Step
Through an Array 	 233

Constant Pointers	 235

Working with C Strings	 238

Smart Pointers	 256

Embedded Systems	 250

Stream Failure Checking	 269

Unicode, UTF-8, and
C++ Strings	 272

Encryption Algorithms	 277

Databases and Privacy	 286

All Data Members Should Be Private;
Most Member Functions
Should Be Public	 303

const Correctness	 303

Make Parallel Vectors into
Vectors of Objects	 317

Overloading	 306

Initializer Lists	 307

Universal and Uniform
Initialization Syntax	 308

Electronic Voting Machines	 314

Open Source and
Free Software	 329

Use a Single Class for Variation in
Values, Inheritance for Variation
in Behavior	 342

Calling the Base-Class
Constructor	 342

Virtual Self-Calls	 354

Who Controls the Internet?	 360

Special Features  xxvii

© MacDaddy/Dreamstime.com. © Nathan Winter/iStockphoto. © Mishella/Dreamstime.com.

Programming
Tips Special Topics Computing &

Society

Use Arrays for Sequences
of Related Values	 184

Prefer Vectors over Arrays	 219

Sorting with the C++ Library	 192

A Sorting Algorithm	 192

Binary Search	 193

Constant Array Parameters	 198

The Range-Based for Loop	 219

Computer Viruses	 185

Use a Separate Definition
for Each Pointer Variable	 229

Program Clearly, Not Cleverly	 234

Pointers and References	 229

Using a Pointer to Step
Through an Array 	 233

Constant Pointers	 235

Working with C Strings	 238

Smart Pointers	 256

Embedded Systems	 250

Stream Failure Checking	 269

Unicode, UTF-8, and
C++ Strings	 272

Encryption Algorithms	 277

Databases and Privacy	 286

All Data Members Should Be Private;
Most Member Functions
Should Be Public	 303

const Correctness	 303

Make Parallel Vectors into
Vectors of Objects	 317

Overloading	 306

Initializer Lists	 307

Universal and Uniform
Initialization Syntax	 308

Electronic Voting Machines	 314

Open Source and
Free Software	 329

Use a Single Class for Variation in
Values, Inheritance for Variation
in Behavior	 342

Calling the Base-Class
Constructor	 342

Virtual Self-Calls	 354

Who Controls the Internet?	 360

xxviii  Special Features

© Steve Simzer/iStockphoto.

CHAPTER

© Scott Harms/iStockphoto.
© Tom Horyn/iStockphoto.

Common
Errors

How Tos
 and

Worked Examples

11	 Recursion Tracing Through Recursive
Functions	 367

Infinite Recursion	 368

Thinking Recursively	 369

Finding Files	 372

Towers of Hanoi	 389

12	 Sorting and Searching Enhancing the Insertion
Sort Algorithm	 418

13	 Advanced C++ Defining a Destructor Without
the Other Two Functions
of the “Big Three”	 442

A Fraction Class	 430

Tracing Memory Management
of Strings	 446

14	 Linked Lists, Stacks,
and Queues

Implementing a Linked List
Template	 472

15	 Set, Maps, and
Hash Tables

Word Frequency	 504

16	 Tree Structures Building a Huffman Tree	 528

Implementing a Red-Black Tree	 551

17	 Priority Queues
and Heaps

Simulating a Queue of
Waiting Customers	 557

Programming
Tips Special Topics Computing &

Society

The Limits of Computation	 390

Library Functions for Sorting and
Binary Search	 412

Oh, Omega, and Theta	 399

Insertion Sort	 400

The Quicksort Algorithm	 407

Defining an Ordering for
Sorting Objects	 413

The First Programmer 	 418

Use Reference Parameters To Avoid
Copies	 441

Overloading Increment and
Decrement Operators	 427

Implicit Type Conversions	 428

Returning References	 429

Virtual Destructors	 443

Suppressing Automatic
Generation of Memory
Management Functions	 443

Move Operations	 444

Shared Pointers	 445

Non-Type Template Parameters	 450

Reverse Polish Notation	 492

Use the auto Type for Iterators	 503 Multisets and Multimaps	 503

Implementing Hash Functions	 514

Open Addressing	 516

Special Features  xxix

© MacDaddy/Dreamstime.com. © Nathan Winter/iStockphoto. © Mishella/Dreamstime.com.

Programming
Tips Special Topics Computing &

Society

The Limits of Computation	 390

Library Functions for Sorting and
Binary Search	 412

Oh, Omega, and Theta	 399

Insertion Sort	 400

The Quicksort Algorithm	 407

Defining an Ordering for
Sorting Objects	 413

The First Programmer 	 418

Use Reference Parameters To Avoid
Copies	 441

Overloading Increment and
Decrement Operators	 427

Implicit Type Conversions	 428

Returning References	 429

Virtual Destructors	 443

Suppressing Automatic
Generation of Memory
Management Functions	 443

Move Operations	 444

Shared Pointers	 445

Non-Type Template Parameters	 450

Reverse Polish Notation	 492

Use the auto Type for Iterators	 503 Multisets and Multimaps	 503

Implementing Hash Functions	 514

Open Addressing	 516

1

C H A P T E R   1
INTRODUCTION

C H A P T E R G O A L S

To learn about the architecture of
computers

To learn about machine languages and
higher-level programming languages

To become familiar with your compiler

To compile and run your first C++ program

To recognize compile-time and run-time errors

To describe an algorithm with pseudocode

To understand the activity of programming

C H A P T E R C O N T E N T S

© JanPietruszka/iStockphoto.

1.1  WHAT IS PROGRAMMING?  2

1.2  THE ANATOMY OF A COMPUTER  3

C&S	 Computers Are Everywhere  5

1.3  MACHINE CODE AND PROGRAMMING
LANGUAGES  5

C&S	 Standards Organizations  7

1.4  BECOMING FAMILIAR WITH YOUR
PROGRAMMING ENVIRONMENT  7

PT 1	 Backup Copies  10

1.5  ANALYZING YOUR FIRST
PROGRAM  11

SYN	 C++ Program  12
SYN	 Output Statement  13
CE 1	 Omitting Semicolons  13
ST 1	 Escape Sequences  13

1.6  ERRORS  14

CE 2	 Misspelling Words  15

1.7  PROBLEM SOLVING: ALGORITHM
DESIGN  16

HT 1	 Describing an Algorithm with
Pseudocode  19

WE 1	 Writing an Algorithm for Tiling a Floor  21

2

Just as you gather tools, study a project, and make a plan for
tackling it, in this chapter you will gather up the basics you
need to start learning to program. After a brief introduction
to computer hardware, software, and programming in
general, you will learn how to write and run your first
C++ program. You will also learn how to diagnose and
fix programming errors, and how to use pseudocode to
describe an algorithm—a step-by-step description of how
to solve a problem—as you plan your programs.

1.1  What Is Programming?
You have probably used a computer for work or fun. Many people use computers for
everyday tasks such as electronic banking or writing a term paper. Computers are
good for such tasks. They can handle repetitive chores, such as totaling up numbers
or placing words on a page, without getting bored or exhausted.

The flexibility of a computer is quite an amazing phenomenon. The same machine
can balance your checkbook, print your term paper, and play a game. In contrast,
other machines carry out a much narrower range of tasks; a car drives and a toaster
toasts. Computers can carry out a wide range of tasks because they execute different
programs, each of which directs the computer to work on a specific task.

The computer itself is a machine that stores data (numbers, words, pictures), inter-
acts with devices (the monitor, the sound system, the printer), and executes programs.
A computer program tells a computer, in minute detail, the sequence of steps that are
needed to fulfill a task. The physical computer and peripheral devices are collectively
called the hardware. The programs the computer executes are called the software.

Today’s computer programs are so sophisticated that it is hard to believe that they
are composed of extremely primitive operations. A typical operation may be one of
the following:

•	 Put a red dot at this screen position.
•	 Add up these two numbers.
•	 If this value is negative, continue the program at a certain instruction.

The computer user has the illusion of smooth interaction because a program contains
a huge number of such operations, and because the computer can execute them at
great speed.

The act of designing and implementing computer programs is called program-
ming. In this book, you will learn how to program a computer—that is, how to direct
the computer to execute tasks.

To write a computer game with motion and sound effects or a word processor
that supports fancy fonts and pictures is a complex task that requires a team of many
highly skilled programmers. Your first programming efforts will be more mundane.
The concepts and skills you learn in this book form an important foundation, and
you should not be disappointed if your first programs do not rival the sophisticated
software that is familiar to you. Actually, you will find that there is an immense thrill
even in simple programming tasks. It is an amazing experience to see the computer
precisely and quickly carry out a task that would take you hours of drudgery, to

Computers
execute very basic
instructions in rapid
succession.

A computer program
is a sequence
of instructions
and decisions.

Programming is the
act of designing
and implementing
computer programs.

© JanPietruszka/iStockphoto.

1.2  The Anatomy of a Computer   3

make small changes in a program that lead to immediate improvements, and to see the
computer become an extension of your mental powers.

1.2  The Anatomy of a Computer
To understand the programming process, you need to have a rudimentary under-
standing of the building blocks that make up a computer. We will look at a personal
computer. Larger computers have faster, larger, or more powerful components, but
they have fundamentally the same design.

At the heart of the computer lies the central processing unit (CPU) (see Figure 1).
It consists of a single chip, or a small number of chips. A computer chip (integrated
circuit) is a component with a plastic or metal housing, metal connectors, and inside
wiring made principally from silicon. For a CPU chip, the inside wiring is enor-
mously complicated. For example, the Pentium chip (a popular CPU for personal
computers at the time of this writing) is composed of several million structural ele-
ments, called transistors.

The CPU performs program control and
data processing. That is, the CPU locates and
executes the program instructions; it carries out
arithmetic operations such as addition, sub-
traction, multiplication, and division; it fetches
data from external memory or devices and
stores data back.

There are two kinds of storage. Primary
storage, or memory, is made from electronic
circuits that can store data, provided they are
supplied with electric power. Secondary stor-
age, usually a hard disk (see Figure 2) or a
solid-state drive, provides slower and less
expensive storage that persists without electric-
ity. A hard disk consists of rotating platters,
which are coated with a magnetic material. A
solid-state drive uses electronic components that can retain information without
power, and without moving parts.

© Amorphis/iStockphoto.

Figure 1  Central Processing Unit

The central
processing unit (CPU)
performs program
control and
data processing.

Storage devices
include memory and
secondary storage.

Figure 2 
A Hard Disk © PhotoDisc, Inc./Getty Images.

4  Chapter 1  Introduction

Programs and data are typically stored on the hard disk and loaded into memory
when the program starts. The program then updates the data in memory and writes
the modified data back to the hard disk.

To interact with a human user, a computer requires peripheral devices. The com-
puter transmits information (called output) to the user through a display screen,
speakers, and printers. The user can enter information (called input) by using a key-
board or a pointing device such as a mouse.

Some computers are self-contained units, whereas others are interconnected
through networks. Through the network cabling, the computer can read data and
programs from central storage locations or send data to other computers. For the
user of a networked computer it may not even be obvious which data reside on the
computer itself and which are transmitted through the network.

Figure 3 gives a schematic overview of the architecture of a personal computer.
Program instructions and data (such as text, numbers, audio, or video) reside in sec-
ondary storage or elsewhere on the network. When a program is started, its instruc-
tions are brought into memory, where the CPU can read them. The CPU reads and
executes one instruction at a time. As directed by these instructions, the CPU reads
data, modifies it, and writes it back to memory or secondary storage. Some program
instructions will cause the CPU to place dots on the display screen or printer or to
vibrate the speaker. As these actions happen many times over and at great speed, the
human user will perceive images and sound. Some program instructions read user
input from the keyboard, mouse, touch sensor, or microphone. The program ana-
lyzes the nature of these inputs and then executes the next appropriate instruction.

Printer

Mouse/Trackpad

Keyboard

Microphone

Ports

CPU

Memory

Disk
controller

Secondary storage

Monitor

Speakers

Internet
Network
controller

Figure 3  Schematic Design of a Personal Computer

1.3  Machine Code and Programming Languages   5

Computing & Society 1.1  Computers Are Everywhere

When computers were
first invented in the

1940s, a computer filled an entire
room. Figure 4 shows the ENIAC (elec-
tronic numerical integrator and com-
puter), completed in 1946 at the Uni-
versity of Pennsylvania. The ENIAC
was used by the military to compute
the trajectories of projectiles. Nowa-
days, computing facilities of search
engines, Internet shops, and social net-
works fill huge buildings called data
centers. At the other end of the spec-
trum, computers are all around us. Your
cell phone has a computer inside, as do
many credit cards and fare cards for
public transit. A modern car has several
computers––to control the engine,
brakes, lights, and radio.

The advent of ubiqui-
tous computing changed
many aspects of our
lives. Factories used
to employ people to
do repetitive assembly
tasks that are today car-
ried out by computer-
controlled robots, oper-
ated by a few people
who know how to work
with those computers.
Books, music, and mov-
ies nowadays are often
consumed on comput-
ers, and computers are
almost always involved
in their production. The book that you
are reading right now could not have

been written without computers.
Knowing about computers and

how to program them has become an
essential skill in many careers. Engi-
neers design computer-controlled cars
and medical equipment that preserve
lives. Computer scientists develop
programs that help people come
together to support social causes. For
example, activists used social net-
works to share videos showing abuse
by repressive regimes, and this infor-
mation was instrumental in changing
public opinion.

As computers, large and small,
become ever more embedded in
our everyday lives, it is increasingly
important for everyone to understand
how they work, and how to work with
them. As you use this book to learn
how to program a computer, you will
develop a good understanding of com-
puting fundamentals that will make
you a more informed citizen and, per-
haps, a computing professional.

1.3  Machine Code and Programming Languages
On the most basic level, computer instructions are extremely primitive. The proces-
sor executes machine instructions. A typical sequence of machine instructions is

1.	Move the contents of memory location 40000 into the CPU.
2.	If that value is greater than 100, continue with the instruction that is stored in

memory location 11280.

© Mishella/Dreamstime.com.

© Maurice Savage/Alamy Stock Photo.

This transit card contains a computer.

© UPPA/Photoshot.

Figure 4  The ENIAC

6  Chapter 1  Introduction

Actually, machine instructions are encoded as numbers so that they can be stored in
memory. On a Pentium processor, this sequence of instruction is encoded as the
sequence of numbers

161 40000 45 100 127 11280

On a processor from a different manufacturer, the encoding would be different.
When this kind of processor fetches this sequence of numbers, it decodes them and
executes the associated sequence of commands.

How can we communicate the command sequence to the computer? The simplest
method is to place the actual numbers into the computer memory. This is, in fact,
how the very earliest computers worked. However, a long program is composed of
thousands of individual commands, and it is a tedious and error-prone affair to look
up the numeric codes for all commands and place the codes manually into memory.
As already mentioned, computers are really good at automating tedious and error-
prone activities. It did not take long for computer scientists to realize that the com-
puters themselves could be harnessed to help in the programming process.

Computer scientists devised high-level programming languages that allow pro-
grammers to describe tasks, using a syntax that is more closely related to the prob-
lems to be solved. In this book, we will use the C++ programming language, which
was developed by Bjarne Stroustrup in the 1980s.

Over the years, C++ has grown
by the addition of many features. A
standardization process culminated
in the publication of the interna-
tional C++ standard in 1998. A
minor update to the standard was
issued in 2003. A major revision
came to fruition in 2011, followed
by updates in 2014 and 2017. At this
time, C++ is the most commonly
used language for developing system
software such as databases and oper-
ating systems. Just as importantly,
C++ is commonly used for program
ming “embedded systems”, comput-
ers that control devices such as auto-
mobile engines or robots.

Here is a typical statement in C++:
if (int_rate > 100) { cout << "Interest rate error"; }

This means, “If the interest rate is over 100, display an error message”. A special com-
puter program, a compiler, translates this high-level description into machine
instructions for a particular processor.

High-level languages are independent of the underlying hardware. C++ instruc-
tions work equally well on an Intel Pentium and a processor in a cell phone. Of
course, the compiler-generated machine instructions are different, but the program-
mer who uses the compiler need not worry about these differences.

Computer programs
are stored as
machine instructions
in a code that
depends on the
processor type.

© Courtesy of Bjarne Stroustrup.

Bjarne Stroustrup

C++ is a general-
purpose language
that is in widespread
use for systems
and embedded
programming.

High-level
programming
languages are
independent of
the processor.

1.4  Becoming Familiar with Your Programming Environment   7

Computing & Society 1.2  Standards Organizations

Two standards orga-
nizations, the Ameri-

can National Standards Institute (ANSI)
and the International Organization
for Standardization (ISO), have jointly
developed the definitive standard for
the C++ language.

Why have standards? You encounter
the benefits of standardization every
day. When you buy a light bulb, you
can be assured that it fits in the socket
without having to measure the socket
at home and the bulb in the store. In
fact, you may have experienced how

painful the lack of standards can be if
you have ever purchased a flashlight
with nonstandard bulbs. Replacement
bulbs for such a flashlight can be dif-
ficult and expensive to obtain.

The ANSI and ISO standards organi
zations are associations of industry
professionals who develop standards
for everything from car tires and
credit card shapes to programming
languages. Having a standard for a
programming language such as C++
means that you can take a program
that you developed on one system

with one manufacturer’s compiler to a
different system and be assured that it
will continue to work.

© Denis Vorob’yev/iStockphoto.

1.4  Becoming Familiar with Your
Programming Environment

Many students find that the tools they need as programmers are very different from
the software with which they are familiar. You should spend some time making your-
self familiar with your programming environment. Because computer systems vary
widely, this book can give only an outline of the steps you need to follow. It is a good
idea to participate in a hands-on lab, or to ask a knowledgeable friend to give you a
tour.

Step 1  Start the C++ development environment.

Computer systems differ greatly in this regard. On many computers there is an inte-
grated development environment in which you can write and test your programs.
On other computers you first launch an editor, a program that functions like a word
processor, in which you can enter your C++ instructions; then open a console window
and type commands to execute your program. Other programming environments
are online. In such an environment, you write programs in a web browser. The pro-
grams are then executed on a remote machine, and the results are displayed in the web
browser window. You need to find out how to get started with your environment.

Step 2	 Write a simple program.

The traditional choice for the very first program in a new programming language is
a program that displays a simple greeting: “Hello, World!”. Let us follow that tradi-
tion. Here is the “Hello, World!” program in C++:

#include <iostream>

using namespace std;

int main()
{

© Mishella/Dreamstime.com.

Set aside some time
to become
familiar with the
programming
environment that you
will use for your
class work.

8  Chapter 1  Introduction

 cout << "Hello, World!" << endl;
 return 0;
}

We will examine this program in the next section.
No matter which programming environment you use, you begin your activity by

typing the program statements into an editor window.
Create a new file and call it hello.cpp, using the steps that are appropriate for your

environment. (If your environment requires that you supply a project name in addi-
tion to the file name, use the name hello for the project.) Enter the program instruc-
tions exactly as they are given above. Alternatively, locate an electronic copy of the
program in the source files for this book and paste it into your editor. (You can down-
load the full set of files for this book from its companion site at wiley.com/go/bclo3.)

As you write this program, pay careful attention to the various symbols, and keep
in mind that C++ is case sensitive. You must enter upper- and lowercase letters
exactly as they appear in the program listing. You cannot type MAIN or Endl. If you are
not careful, you will run into problems—see Common Error 1.2.

Step 3	 Compile and run the program.

The process for building and running a C++ program depends greatly on your pro-
gramming environment. In some integrated development environments, you simply
push a button. In other environments, you may have to type commands. When you
run the test program, the message

Hello, World!

will appear somewhere on the screen (see Figures 5 and 6).

An editor is a
program for entering
and modifying
text, such as a C++
program.

C++ is case sensitive.
You must be careful
about distinguishing
between upper- and
lowercase letters.

The compiler
translates C++
programs into
machine code.

Figure 5  Running the hello Program in an Integrated Development Environment

1.4  Becoming Familiar with Your Programming Environment   9

Figure 6  Compiling and Running the hello Program in a Console Window

It is useful to know what goes on behind the scenes when your program gets built.
First, the compiler translates the C++ source code (that is, the statements that you
wrote) into machine instructions. The machine code contains only the translation of
the code that you wrote. That is not enough to actually run the program. To display a
string on a window, quite a bit of low-level activity is necessary. The implementors of
your C++ development environment provided a library that includes the definition
of cout and its functionality. A library is a collection of code that has been pro
grammed and translated by someone else, ready for you to use in your program.
(More complicated programs are built from more than one machine code file and
more than one library.) A program called the linker takes your machine code and the
necessary parts from the C++ library and builds an executable file. (Figure 7 gives an
overview of these steps.) The executable file is usually called hello.exe or hello,
depending on your computer system. You can run the executable program even after
you exit the C++ development environment.

Step 4	 Organize your work.

As a programmer, you write programs, try them out, and improve them. You store
your programs in files. Files have names, and the rules for legal names differ from
one system to another. Some systems allow spaces in file names; others don’t. Some
distinguish between upper- and lowercase letters; others don’t. Most C++ compilers
require that C++ files end in an extension .cpp, .cxx, .cc, or .C; for example, demo.cpp.

The linker combines
machine code with
library code into an
executable program.

CompilerEditor Linker

Executable
ProgramSource File

Library �les

Machine code

Figure 7  From Source Code to Executable Program

