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PREFACE

iii

This book is an introduction to C++ and computer programming that focuses on 
the essentials—and on effective learning. The book is designed to serve a wide range 
of student interests and abilities and is suitable for a first course in programming for 
computer scientists, engineers, and students in other disciplines. No prior program-
ming experience is required, and only a modest amount of high school algebra is 
needed. 

Here are the key features of this book:

Present fundamentals first.
This book uses the C++ programming language as a vehicle for introducing com-
puter science concepts. A substantial subset of the C++ language is covered, focusing 
on the modern features of standard C++ that make students productive. The book 
takes a traditional route, first stressing control structures, procedural decomposition, 
and array algorithms. Objects are used when appropriate in the early chapters. Stu-
dents start designing and implementing their own classes in Chapter 9. 

Guidance and worked examples help students succeed. 
Beginning programmers often ask “How do I start? Now what do I do?” Of course, 
an activity as complex as programming cannot be reduced to cookbook-style instruc-
tions. However, step-by-step guidance is immensely helpful for building confidence 
and providing an outline for the task at hand. “Problem Solving” sections stress the 
importance of design and planning. “How To” guides help students with common 
programming tasks. Additional Worked Examples are available in the E-Text or 
online.

Tip: Source files for all of the program examples in the book, including the Worked 
Examples, are provided with the source code for this book. Download the files to 
your computer for easy access as you work through the chapters.

Practice makes perfect. 
Of course, programming students need to be able to implement nontrivial programs, 
but they first need to have the confidence that they can succeed. The Enhanced E-Text 
immerses students in activities designed to foster in-depth learning. Students don’t 
just watch animations and code traces, they work on generating them. The activities 
provide instant feedback to show students what they did right and where they need 
to study more. A wealth of practice opportunities, including code completion ques-
tions and skill-oriented multiple-choice questions, appear at the end of each section, 
and each chapter ends with well-crafted review exercises and programming projects.

Problem solving strategies are made explicit.
Practical, step-by-step illustrations of techniques help students devise and evaluate 
solutions to programming problems. Introduced where they are most relevant, these 
strategies address barriers to success for many students. Strategies included are:

•	 Algorithm Design (with pseudocode)
•	 First Do It By Hand (doing sample calculations by hand)
•	 Flowcharts
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•	 Selecting Test Cases
•	 Hand-Tracing
•	 Storyboards
•	 Solve a Simpler Problem First
•	 Reusable Functions
•	 Stepwise Refinement
•	 Adapting Algorithms 
•	 Discovering Algorithms by Manipulating Physical Objects
•	 Draw a Picture (pointer diagrams)
•	 Tracing Objects (identifying state and behavior)
•	 Discovering Classes
•	 Thinking Recursively
•	 Estimating the Running Time of an Algorithm

A visual approach motivates the reader and eases navigation. 
Photographs present visual analogies that explain 
the nature and behavior of computer concepts. 
Step-by-step figures illustrate complex program 
operations. Syntax boxes and example tables pres-
ent a variety of typical and special cases in a com-
pact format. It is easy to get the “lay of the land” by 
browsing the visuals, before focusing on the textual 
material.

Focus on the essentials while being 
technically accurate. 
An encyclopedic coverage is not helpful for a 
beginning programmer, but neither is the oppo-
site—reducing the material to a list of simplistic bullet points. In this book, the essen-
tials are presented in digestible chunks, with separate notes that go deeper into good 
practices or language features when the reader is ready for the additional information. 
You will not find artificial over-simplifications that give an illusion of knowledge. 

Reinforce sound engineering practices.
A multitude of useful tips on software quality and common errors encourage the 
development of good programming habits. The focus is on test-driven development, 
encouraging students to test their programs systematically.

Engage with optional engineering and business exercises.
End-of-chapter exercises are enhanced with problems from scientific and business 
domains. Designed to engage students, the exercises illustrate the value of program-
ming in applied fields. 

© Terraxplorer/iStockphoto.

Visual features help the reader  
with navigation.
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New to This Edition

Updated for Modern Versions of C++
A number of features of the C++ 2011 and C++ 2014 standards are described either as 
recommended “best practice” or as Special Topics.

New and Reorganized Topics
The book now supports two pathways into object-oriented programming and inher-
itance. Pointers and structures can be covered before introducing classes. Alterna-
tively, pointers can be deferred until after the implementation of classes.

This edition further supports a second course in computer science by adding cov-
erage of the implementation of common data structures and algorithms.

A sequence of Worked Examples and exercises introduces “media computation,” 
such as generating and modifying images, sounds, and animations.

Lower-Cost, Interactive Format
This third edition is published as a lower-cost Enhanced E-Text that supports active 
learning through a wealth of interactive activities. These activities engage and prepare 
students for independent programming and the Review Exercises, Practice Exercises, 
and Programming Projects at the end of each E-Text chapter. The Enhanced E-Text 
may also be bundled with an Abridged Print Companion, which is a bound book that 
contains the entire text for reference, but without exercises or practice material. 

Interactive learning solutions are expanding every day, so to learn more about 
these options or to explore other options to suit your needs, please contact your 
Wiley account manager (www.wiley.com/go/whosmyrep) or visit the product information 
page for this text on wiley.com (http://wiley.com/college/sc/horstmann).

The Enhanced E-Text is designed to enable student practice without the instructor 
assigning the interactivities or recording their scores. If you are interested in assign-
ing and grading students’ work on them, ask your Wiley Account Manager about the 
online course option implemented in the Engage Learning Management System. The 
Engage course supports the assignment and automatic grading of the interactivities. 
Engage access includes access to the Enhanced E-Text.

Features in the Enhanced E-Text
The interactive Enhanced E-Text guides students from the basics to writing complex 
programs. After they read a bit, they can try all of the interactive exercises for that 
section.  Active reading is an engaging way for students to ensure that students are 
prepared before going to class.

There five types of interactivities:

Code Walkthrough  Code Walkthrough activities ask students to trace through a 
segment of code, choosing which line will be executed next and entering the new 
values of variables changed by the code’s execution. This activity simulates the hand-
tracing problem solving technique taught in Chapters 3 and 4—but with immediate 
feedback. 

http://www.wiley.com/go/whosmyrep
http://wiley.com/college/sc/horstmann
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Example Table  Example table activities make the student the active participant in 
building up tables of code examples similar to those found in the book. The tables 
come in many different forms. Some tables ask the student to determine the output of 
a line of code, or the value of an expression, or to provide code for certain tasks. This 
activity helps students assess their understanding of the reading—while it is easy to 
go back and review.

Algorithm Animation  An algorithm animation shows the essential steps of an 
algorithm. However, instead of passively watching, students get to predict each step. 
When finished, students can start over with a different set of inputs. This is a surpris-
ingly effective way of learning and remembering algorithms.

Rearrange Code  Rearrange code activities ask the student to arrange lines of code 
by dragging them from the list on the right to the area at left so that the resulting code 
fulfills the task described in the problem. This activity builds facility with coding 
structure and implementing common algorithms. 

Object Diagram  Object diagram activities ask the student to create a memory 
diagram to illustrate how variables and objects are initialized and updated as sample 
code executes. The activity depicts variables, objects, and references in the same way 
as the figures in the book. After an activity is completed, pressing “Play” replays the 
animation. This activity goes beyond hand-tracing to illuminate what is happening in 
memory as code executes.

Code Completion  Code completion activities ask the student to finish a partially-
completed program, then paste the solution into CodeCheck (a Wiley-based online 
code evaluator) to learn whether it produces the desired result. Tester classes on the 
CodeCheck site run and report whether the code passed the tests. This activity serves 
as a skill-building lab to better prepare the student for writing programs from scratch.

 A Tour of the Book
This book is intended for a two-semester introduction to programming that may also 
include algorithms and data structures. The organization of chapters offers the same 
flexibility as the previous edition; dependencies among the chapters are also shown 
in Figure 1.

Part A: Fundamentals (Chapters 1–8)
The first six chapters follow a traditional approach to basic programming concepts. 
Students learn about control structures, stepwise refinement, and arrays. Objects are 
used only for input/output and string processing. Input/output is first covered in 
Chapter 2, which may be followed by an introduction to reading and writing text 
files in Section 8.1. 

In a course for engineers with a need for systems and embedded programming, 
you will want to cover Chapter 7 on pointers. Sections 7.1 and 7.4 are sufficient for 
using pointers with polymorphism in Chapter 10.

File processing is the subject of Chapter 8. Section 8.1 can be covered sooner for 
an introduction to reading and writing text files. The remainder of the chapter gives 
additional material for practical applications.



Preface  vii

Part B: Object-Oriented Design (Chapters 9–10)
After students have gained a solid foundation, they are ready to tackle the implemen-
tation of classes. Chapters 9 and 10 introduce the object-oriented features of C++. 
Chapter 9 introduces class design and implementation. Chapter 10 covers inheritance 
and polymorphism. By the end of these chapters, students will be able to implement 
programs with multiple interacting classes. 

Part C: Data Structures and Algorithms (Chapters 11–17)
Chapters 11–17 cover algorithms and data structures at a level suitable for begin-
ning students. Recursion, in Chapter 11, starts with simple examples and progresses 

Figure 1   
Chapter Dependencies

10. Inheritance 13. Advanced 
C++

11. Recursion

12. Sorting 
and Searching

14. Linked Lists, 
Stacks and Queues

6. Iteration

9. Classes

15. Sets, Maps 
and Hash Tables

Fundamentals

Object-Oriented Design

Data Structures & Algorithms

1. Introduction

2. Fundamental 
Data Types

3. Decisions

4. Loops

5. Functions

6. Arrays 
and Vectors

7. Pointers 8. Streams

A gentle 
introduction to recursion 

is optional.
Section 8.1 

contains the core 
material

Sections 
7.1 and 7.4 are 

required

16. Trees

17. Priority 
Queues and Heaps

Section 15.1 
is required

http://www.wiley.com/go/whosmyrep
http://www.wiley.com/college/sc/horstmann
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to meaningful applications that would be difficult to implement iteratively. Chapter 
12 covers quadratic sorting algorithms as well as merge sort, with an informal intro-
duction to big-Oh notation. Chapter 13 introduces advanced C++ features that are 
required for implementing data structures, including templates and memory man-
agement. Chapters 14–17 cover linear and tree-based data structures. Students learn 
how to use the standard C++ library versions. They then study the implementations 
of these data structures and analyze their efficiency. 

Any subset of these chapters can be incorporated into a custom print version of 
this text; ask your Wiley sales representative for details, or visit customselect.wiley.com 
to create your custom order. 

Appendices
Appendices A and B summarize C++ reserved words and operators. Appendix C 
lists character escape sequences and ASCII character code values. Appendix D docu-
ments all of the library functions and classes used in this book. 

Appendix E contains a programming style guide. Using a style guide for program
ming assignments benefits students by directing them toward good habits and reduc-
ing gratuitous choice. The style guide is available in electronic form on the book’s 
companion web site so that instructors can modify it to reflect their preferred style. 

Appendix F introduces common number systems used in computing.

Web Resources
This book is complemented by a complete suite of online resources. Go to www.wiley.
com/go/bclo3 to visit the online companion sites, which include

•	 Source code for all example programs in the book and its Worked Examples, plus 
additional example programs.

•	 Worked Examples that apply the problem-solving steps in the book to other 
realistic examples.

•	 Lecture presentation slides (for instructors only).
•	 Solutions to all review and programming exercises (for instructors only).
•	 A test bank that focuses on skills, not just terminology (for instructors only). This 

extensive set of multiple-choice questions can be used with a word processor or 
imported into a course management system.

•	 “CodeCheck” assignments that allow students to work on programming prob-
lems presented in an innovative online service and receive immediate feedback. 
Instructors can assign exercises that have already been prepared, or easily add 
their own. Visit http://codecheck.it to learn more. 

  
WORKED EXAMPLE 2.1  

Computing Travel Time

Learn how to develop a hand calculation to compute the time that 
a robot requires to retrieve an item from rocky terrain. See your 
E-Text or visit wiley.com/go/bclo3.
  Courtesy of NASA.

Pointers in the print 
companion describe what 
students will �nd in their 
E-Text or online.

EXAMPLE CODE See how_to_1/scores_vector in your companion code for a solution using vectors instead of arrays.

http://www.wiley.com/go.bclo3
http://codecheck.it
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A Walkthrough of the Learning Aids
The pedagogical elements in this book work together to focus on and reinforce key 
concepts and fundamental principles of programming, with additional tips and detail 
organized to support and deepen these fundamentals. In addition to traditional 
features, such as chapter objectives and a wealth of exercises, each chapter contains 
elements geared to today’s visual learner.

106 Chapter 4  Loops

4.3 The for Loop
It often happens that you want to execute a sequence of 
statements a given number of times. You can use a while 
loop that is controlled by a counter, as in the following 
example: 
counter = 1; // Initialize the counter
while (counter <= 10) // Check the counter
{
   cout << counter << endl;
   counter++; // Update the counter
}

Because this loop type is so common, there is a special 
form for it, called the for loop (see Syntax 4.2). 
for (counter = 1; counter <= 10; counter++)
{
   cout << counter << endl;
}

Some people call this loop count-controlled. In contrast, 
the while loop of the preceding section can be called an 
event-controlled loop because it executes until an event 
occurs (for example, when the balance reaches the target). Another commonly-used 
term for a count-controlled loop is de�nite. You know from the outset that the loop 
body will be executed a de�nite number of times––ten times in our example. In con-
trast, you do not know how many iterations it takes to accumulate a target balance. 
Such a loop is called inde�nite.

Syntax 4.2 for Statement

for (int i = 5; i <= 10; i++)
{
   sum = sum + i;
} This loop executes 6 times. 

         See Programming Tip 4.3.

These three 
expressions should be related.

             See Programming Tip 4.1.

This initialization 
happens once 
before the loop starts.

The loop is 
executed while 
this condition is true.

This update is 
executed after 
each iteration.

The variable i is 
defined only in this

 for loop. 

 

The for loop neatly groups the initialization, condition, and update expressions 
together. However, it is important to realize that these expressions are not executed 
together (see Figure 3). 

© Enrico Fianchini/iStockphoto.

You can visualize the  
for loop as an orderly  
sequence of steps. 

The for loop is  
used when a  
value runs from a 
starting point to an 
ending point with a  
constant increment 
or decrement. 

Annotations explain 
required components 
and point to more information 
on common errors or best practices 
associated with the syntax.

Throughout each chapter, 
margin notes show where 
new concepts are introduced 
and provide an outline of key ideas. 

Annotated syntax boxes 
provide a quick, visual overview 
of new language constructs.

Like a variable in a computer 
program, a parking space has 
an identifier and contents. 

Analogies to everyday objects are 
used to explain the nature and behavior 
of concepts such as variables, data 
types, loops, and more.

http://customselect.wiley.com
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6.5 Problem Solving: Discovering Algorithms by Manipulating Physical Objects  277

Now how does that help us with our problem, switching the first and the second 
half of the array?

Let’s put the first coin into place, by swapping it with the fifth coin. However, as 
C++ programmers, we will say that we swap the coins in positions 0 and 4:  

  

  

 
 
 

   

Next, we swap the coins in positions 1 and 5: 

  

  
HOW TO 1.1  

Describing an Algorithm with Pseudocode

This is the �rst of many “How To” sections in this book that give you step-by-step proce-
dures for carrying out important tasks in developing computer programs.

Before you are ready to write a program in C++, you need to develop an algorithm—a 
method for arriving at a solution for a particular problem. Describe the algorithm in pseudo-
code––a sequence of precise steps formulated in English. To illustrate, we’ll devise an algo-
rithm for this problem: 

Problem Statement You have the choice of buying one 
of two cars. One is more fuel ef�cient than the other, but also 
more expensive. You know the price and fuel ef�ciency (in miles 
per gallon, mpg) of both cars. You plan to keep the car for ten 
years. Assume a price of $4 per gallon of gas and usage of 15,000 
miles per year. You will pay cash for the car and not worry about 
�nancing costs. Which car is the better deal? 

Step 1 Determine the inputs and outputs.

In our sample problem, we have these inputs:
• purchase price1 and fuel efficiency1, the price and fuel ef�ciency (in mpg) of the �rst car
• purchase price2 and fuel efficiency2, the price and fuel ef�ciency of the second car

© dlewis33/Getty Images.

Memorable photos reinforce 
analogies and help students 
remember the concepts.

Problem Solving sections teach 
techniques for generating ideas and 
evaluating proposed solutions, often
using pencil and paper or other 
artifacts. These sections emphasize
that most of the planning and problem
solving that makes students successful
happens away from the computer.

How To guides give step-by-step 
guidance for common programming 
tasks, emphasizing planning and 
testing. They answer the beginner’s 
question, “Now what do I do?” and 
integrate key concepts into a 
problem-solving sequence.

Worked Examples apply 
the steps in the How To to 
a di�erent example, showing 
how they can be used to 
plan, implement, and test 
a solution to another 
programming problem.

A recipe for a fruit pie may say to use any kind of fruit.  
Here, “fruit” is an example of a parameter variable.  
Apples and cherries are examples of arguments.

pie(fruit) pie(fruit)

  
WORKED EXAMPLE 1.1  

Writing an Algorithm for Tiling a Floor

Problem Statement Your task is to tile a rectangular bathroom 
oor with alternating 
black and white tiles measuring 4 × 4 inches. The 
oor dimensions, measured in inches, are 
multiples of 4.

Step 1 Determine the inputs and outputs.

The inputs are the 
oor dimensions (length × width), 
measured in inches. The output is a tiled 
oor. 

Step 2 Break down the problem into smaller tasks.

A natural subtask is to lay one row of tiles. If you can 
solve that task, then you can solve the problem by lay-
ing one row next to the other, starting from a wall, until 
you reach the opposite wall. 

How do you lay a row? Start with a tile at one wall. 
If it is white, put a black one next to it. If it is black, put 
a white one next to it. Keep going until you reach the 
opposite wall. The row will contain width / 4 tiles. 

Step 3 Describe each subtask in pseudocode.

© rban/iStockphoto.

Table 3  Variable Names in C++

Variable Name Comment

can_volume1 Variable names consist of letters, numbers, and the underscore 
character.

x In mathematics, you use short variable names such as x or y. This is 
legal in C++, but not very common, because it can make programs 
harder to understand (see Programming Tip 2.1).

!
Can_volume Caution: Variable names are case sensitive. This variable name is 

different from can_volume.

6pack Error: Variable names cannot start with a number.

can volume Error: Variable names cannot contain spaces.

double Error: You cannot use a reserved word as a variable name.

ltr/fl.oz Error: You cannot use symbols such as . or / 

Example tables support beginners 
with multiple, concrete examples. 
These tables point out common 
errors and present another quick 
reference to the section’s topic.

http://www.wiley.com/go/bclo3
http://codecheck.it
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Consider the function call illustrated in Figure 3: 
double result1 = cube_volume(2); 

• The parameter variable side_length of the cube_volume function is created. ❶
• The parameter variable is initialized with the value of the argument that was 

passed in the call. In our case, side_length is set to 2. ❷
• The function computes the expression side_length * side_length * side_length, 

which has the value 8. That value is stored in the variable volume. ❸
• The function returns. All of its variables are removed. The return value is trans-

ferred to the caller, that is, the function calling the cube_volume function. ❹

1 Function call result1 =

side_length =

2 Initializing function parameter variable result1 =

side_length = 2

3 About to return to the caller result1 =

side_length =

volume = 8

2

4 After function call result1 = 8

double result1 = cube_volume(2);

double volume = side_length * side_length * side_length;
return volume;

double result1 = cube_volume(2);

double result1 = cube_volume(2);

Figure 3 Parameter Passing

Progressive �gures trace code 
segments to help students visualize 
the program �ow. Color is used 
consistently to make variables and 
other elements easily recognizable.

Optional engineering exercises 
engage students with applications
from technical �elds. Engineering P7.12 Write a program that simulates the control 

software for a “people mover” system, a set of 
driverless trains that move in two concentric 
circular tracks. A set of switches allows trains 
to switch tracks.
In your program, the outer and inner tracks 
should each be divided into ten segments. 
Each track segment can contain a train that 
moves either clockwise or counterclockwise. 
A train moves to an adjacent segment in its track or, if that segment is occupied, to 
the adjacent segment in the other track. 
Define a Segment structure. Each segment has a pointer to the next and previous 
segments in its track, a pointer to the next and previous seg ments in the other track, 

Additional example programs 
are provided with the companion 
code for students to read, run, 
and modify. 

for (counter = 1; counter <= 10; counter++)
{
   cout << counter << endl;
}

Initialize counter1

for (counter = 1; counter <= 10; counter++)
{
   cout << counter << endl;
}

Check condition2

for (counter = 1; counter <= 10; counter++)
{
   cout << counter << endl;
}

Execute loop body3

for (counter = 1; counter <= 10; counter++)
{
   cout << counter << endl;
}

Update counter4

for (counter = 1; counter <= 10; counter++)
{
   cout << counter << endl;
}

Check condition again5

counter = 1

counter = 1

counter = 1

counter = 2

counter = 2

Figure 3 Execution of a for Loop  

sec02/cube.cpp

1 #include <iostream>
2 
3 using namespace std;
4 
5 /**
6    Computes the volume of a cube.
7    @param side_length the side length of the cube
8    @return the volume
9 */

10 double cube_volume(double side_length)
11 {
12    double volume = side_length * side_length * side_length;
13    return volume;
14 }
15 
16 int main()
17 {
18    double result1 = cube_volume(2);
19    double result2 = cube_volume(10);
20    cout << "A cube with side length 2 has volume " << result1 << endl;
21    cout << "A cube with side length 10 has volume " << result2 << endl;
22 
23    return 0;
24 }

Program Run

A cube with side length 2 has volume 8
A cube with side length 10 has volume 1000

Program listings are carefully 
designed for easy reading, 
going well beyond simple 
color coding. Functions are set 
o� by a subtle outline. 

EXAMPLE CODE See sec04 of your companion code for another implementation of the earthquake program that you 
saw in Section 3.3. Note that the get_description function has multiple return statements.
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Programming Tip 3.6  

Hand-Tracing

A very useful technique for understanding whether a program 
works correctly is called hand-tracing. You simulate the pro-
gram’s activity on a sheet of paper. You can use this method with 
pseudocode or C++ code.

Get an index card, a cocktail napkin, or whatever sheet of 
paper is within reach. Make a column for each variable. Have the 
program code ready. Use a marker, such as a paper clip, to mark 
the current statement. In your mind, execute statements one at a 
time. Every time the value of a variable changes, cross out the old 
value and write the new value below the old one. 

For example, let’s trace the tax program with the data from the 
program run in Section 3.4. In lines 13 and 14, tax1 and tax2 are 
initialized to 0. 
6 int main()
7 {  
8    const double RATE1 = 0.10;
9    const double RATE2 = 0.25;

10    const double RATE1_SINGLE_LIMIT = 32000;
11    const double RATE1_MARRIED_LIMIT = 64000;
12    
13    double tax1 = 0;
14    double tax2 = 0;
15    

In lines 18 and 22, income and marital_status are initialized by input statements.
16    double income;
17    cout << "Please enter your income: ";
18    cin >> income;
19 
20    cout << "Please enter s for single, m for married: ";
21    string marital_status;
22    cin >> marital_status;
23 

Because marital_status is not "s", we move to the else 
branch of the outer if statement (line 36).
24    if (marital_status == "s")
25    {
26       if (income <= RATE1_SINGLE_LIMIT)
27       {
28          tax1 = RATE1 * income;
29       }
30       else
31       {
32          tax1 = RATE1 * RATE1_SINGLE_LIMIT;

© thomasd007/iStockphoto.

Hand-tracing helps you 
understand whether a 
program works correctly.

    marital
 tax1 tax2 income status

 0 0

    marital
 tax1 tax2 income status

 0 0 80000 m

  
Common Error 2.1  

Using Unde�ned Variables

You must de�ne a variable before you use it for the �rst time. For example, the following 
sequence of statements would not be legal:

double can_volume = 12 * liter_per_ounce; 
double liter_per_ounce = 0.0296;

In your program, the statements are compiled in order. When the compiler reaches the �rst 
statement, it does not know that liter_per_ounce will be de�ned in the next line, and it reports 
an error.

Special Topics present optional 
topics and provide additional 
explanation of others.  

Common Errors describe the kinds 
of errors that students often make, 
with an explanation of why the errors 
occur, and what to do about them. 

Programming Tips explain 
good programming practices, 
and encourage students to be 
more productive with tips and 
techniques such as hand-tracing.

  
Special Topic 6.5 

The Range-Based for Loop

C++ 11 introduces a convenient syntax for visiting all elements in a “range” or sequence of ele-
ments. This loop displays all elements in a vector:

vector<int> values = {1, 4, 9, 16, 25, 36};
for (int v : values)
{
   cout << v << " ";
}

In each iteration of the loop, v is set to an element of the vector. Note that you do not use an 
index variable. The value of v is the element, not the index of the element.

If you want to modify elements, declare the loop variable as a reference:

for (int& v : values)
{
   v++;
}

This loop increments all elements of the vector.
You can use the reserved word auto, which was introduced in Special Topic 2.3, for the type 

of the element variable:

for (auto v : values) { cout << v << " "; }

The range-based for loop also works for arrays:

int primes[] = { 2, 3, 5, 7, 11, 13 };
for (int p : primes)
{
   cout << p << " ";
}

The range-based for loop is a convenient shortcut for visiting or updating all elements of a 
vector or an array. This book doesn’t use it because one can achieve the same result by looping 
over index values. But if you like the more concise form, and use C++ 11 or later, you should 
certainly consider using it.

EXAMPLE CODE See special_topic_5 of your companion code for a program that demonstrates the range-based  
for loop.
  

    

Computing & Society 7.1 Embedded Systems

An embedded sys-
tem is a computer 

system that controls a device. The 
device con tains a processor and other 
hardware and is controlled by a com-
puter pro gram. Unlike a personal 
computer, which has been designed 
to be �exi ble and run many di�erent 
computer programs, the hardware 
and software of an embedded system 
are tailored to a speci�c device. Com-
puter controlled devices are becom-
ing increasingly common, ranging 
from washing machines to medical 
equipment, cell phones, automobile 
engines, and spacecraft. 

Several challenges are speci�c to 
programming embedded systems. 
Most importantly, a much higher stan-
dard of quality control applies. Ven-
dors are often unconcerned about 
bugs in personal computer software, 
because they can always make you 
install a patch or upgrade to the next 
version. But in an embedded system, 
that is not an option. Few consumers 

would feel comfortable upgrading the 
software in their washing machines 
or automobile engines. If you ever 
handed in a programming assign ment 
that you believed to be correct, only to 
have the instructor or grader �nd bugs 
in it, then you know how hard it is to 
write software that can reliably do its 
task for many years without a chance 
of changing it. Qual ity standards are 
especially important in devices whose 
failure would destroy property or 
endanger human life. Many personal 
computer purchas ers buy computers 
that are fast and have a lot of stor-
age, because the investment is paid 
back over time when many programs 
are run on the same equipment. But 
the hardware for an embedded device 
is not shared––it is dedicated to one 
device. A separate processor, memory, 
and so on, are built for every copy of 
the device. If it is possible to shave a 
few pennies o� the manufacturing 
cost of every unit, the savings can add 
up quickly for devices that are pro-

duced in large volumes. Thus, the pro-
grammer of an embed ded system has 
a much larger economic incentive to 
conserve resources than the desktop 
software programmer. Unfortunately, 
try ing to conserve resources usually 
makes it harder to write programs that 
work correctly. 

C and C++ are commonly used 
lan guages for developing embedded 
sys tems.

© Courtesy of Professor Prabal Dutta.

The Controller of an Embedded System

  

Computing & Society presents social  
and historical topics on computing—for 
interest and to ful�ll the “historical and 
social context” requirements of the 
ACM/IEEE curriculum guidelines.
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Interactive activities in the E-Text
engage students in active reading as they…

Trace through a code segment

Build an example table

Explore common algorithms

Arrange code to ful�ll a task

Create a memory diagramComplete a program and 
get immediate feedback
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Just as you gather tools, study a project, and make a plan for 
tackling it, in this chapter you will gather up the basics you 
need to start learning to program. After a brief introduction 
to computer hardware, software, and programming in 
general, you will learn how to write and run your first 
C++ program. You will also learn how to diagnose and 
fix programming errors, and how to use pseudocode to 
describe an algorithm—a step-by-step description of how 
to solve a problem—as you plan your programs.

1.1  What Is Programming?
You have probably used a computer for work or fun. Many people use computers for 
everyday tasks such as electronic banking or writing a term paper. Computers are 
good for such tasks. They can handle repetitive chores, such as totaling up numbers 
or placing words on a page, without getting bored or exhausted. 

The flexibility of a computer is quite an amazing phenomenon. The same machine 
can balance your checkbook, print your term paper, and play a game. In contrast, 
other machines carry out a much narrower range of tasks; a car drives and a toaster 
toasts. Computers can carry out a wide range of tasks because they execute different 
programs, each of which directs the computer to work on a specific task.

The computer itself is a machine that stores data (numbers, words, pictures), inter-
acts with devices (the monitor, the sound system, the printer), and executes programs. 
A computer program tells a computer, in minute detail, the sequence of steps that are 
needed to fulfill a task. The physical computer and peripheral devices are collectively 
called the hardware. The programs the computer executes are called the software. 

Today’s computer programs are so sophisticated that it is hard to believe that they 
are composed of extremely primitive operations. A typical operation may be one of 
the following:

•	 Put a red dot at this screen position.
•	 Add up these two numbers.
•	 If this value is negative, continue the program at a certain instruction.

The computer user has the illusion of smooth interaction because a program contains 
a huge number of such operations, and because the computer can execute them at 
great speed.

The act of designing and implementing computer programs is called program-
ming. In this book, you will learn how to program a computer—that is, how to direct 
the computer to execute tasks.

To write a computer game with motion and sound effects or a word processor 
that supports fancy fonts and pictures is a complex task that requires a team of many 
highly skilled programmers. Your first programming efforts will be more mundane. 
The concepts and skills you learn in this book form an important foundation, and 
you should not be disappointed if your first programs do not rival the sophisticated 
software that is familiar to you. Actually, you will find that there is an immense thrill 
even in simple programming tasks. It is an amazing experience to see the computer 
precisely and quickly carry out a task that would take you hours of drudgery, to 

Computers 
execute very basic 
instructions in rapid 
succession. 

A computer program 
is a sequence  
of instructions  
and decisions.

Programming is the 
act of designing 
and implementing 
computer programs.

© JanPietruszka/iStockphoto.
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make small changes in a program that lead to immediate improvements, and to see the 
computer become an extension of your mental powers.

1.2  The Anatomy of a Computer
To understand the programming process, you need to have a rudimentary under-
standing of the building blocks that make up a computer. We will look at a personal 
computer. Larger computers have faster, larger, or more powerful components, but 
they have fundamentally the same design.

At the heart of the computer lies the central processing unit (CPU) (see Figure 1). 
It consists of a single chip, or a small number of chips. A computer chip (integrated 
circuit) is a component with a plastic or metal housing, metal connectors, and inside 
wiring made principally from silicon. For a CPU chip, the inside wiring is enor-
mously complicated. For example, the Pentium chip (a popular CPU for personal 
computers at the time of this writing) is composed of several million structural ele-
ments, called transistors. 

The CPU performs program control and 
data processing. That is, the CPU locates and 
executes the program instructions; it carries out 
arithmetic operations such as addition, sub-
traction, multiplication, and division; it fetches 
data from external memory or devices and 
stores data back. 

There are two kinds of storage. Primary 
storage, or memory, is made from electronic 
circuits that can store data, provided they are 
supplied with electric power. Secondary stor-
age, usually a hard disk (see Figure 2) or a 
solid-state drive, provides slower and less 
expensive storage that persists without electric-
ity. A hard disk consists of rotating platters, 
which are coated with a magnetic material. A 
solid-state drive uses electronic components that can retain information without 
power, and without moving parts.

© Amorphis/iStockphoto.

Figure 1  Central Processing Unit

The central 
processing unit (CPU) 
performs program 
control and  
data processing.

Storage devices 
include memory and 
secondary storage.

Figure 2   
A Hard Disk © PhotoDisc, Inc./Getty Images.
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Programs and data are typically stored on the hard disk and loaded into memory 
when the program starts. The program then updates the data in memory and writes 
the modified data back to the hard disk. 

To interact with a human user, a computer requires peripheral devices. The com-
puter transmits information (called output) to the user through a display screen,  
speakers, and printers. The user can enter information (called input) by using a key-
board or a pointing device such as a mouse.

Some computers are self-contained units, whereas others are interconnected 
through networks. Through the network cabling, the computer can read data and 
programs from central storage locations or send data to other computers. For the 
user of a networked computer it may not even be obvious which data reside on the 
computer itself and which are transmitted through the network. 

Figure 3 gives a schematic overview of the architecture of a personal computer. 
Program instructions and data (such as text, numbers, audio, or video) reside in sec-
ondary storage or elsewhere on the network. When a program is started, its instruc-
tions are brought into memory, where the CPU can read them. The CPU reads and 
executes one instruction at a time. As directed by these instructions, the CPU reads 
data, modifies it, and writes it back to memory or secondary storage. Some program 
instructions will cause the CPU to place dots on the display screen or printer or to 
vibrate the speaker. As these actions happen many times over and at great speed, the 
human user will perceive images and sound. Some program instructions read user 
input from the keyboard, mouse, touch sensor, or microphone. The program ana-
lyzes the nature of these inputs and then executes the next appropriate instruction. 

Printer

Mouse/Trackpad

Keyboard

Microphone

Ports

CPU

Memory

Disk 
controller

Secondary storage

Monitor

Speakers

Internet
Network 
controller

Figure 3  Schematic Design of a Personal Computer
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Computing & Society 1.1  Computers Are Everywhere

When computers were 
first invented in the 

1940s, a computer filled an entire 
room. Figure 4 shows the ENIAC (elec-
tronic numerical integrator and com-
puter), completed in 1946 at the Uni-
versity of Pennsylvania. The ENIAC 
was used by the military to compute 
the trajectories of projectiles. Nowa-
days, computing facilities of search 
engines, Internet shops, and social net-
works fill huge buildings called data 
centers. At the other end of the spec-
trum, computers are all around us. Your 
cell phone has a computer inside, as do 
many credit cards and fare cards for 
public transit. A modern car has several 
computers––to control the engine, 
brakes, lights, and radio.  

The advent of ubiqui-
tous computing changed 
many aspects of our 
lives. Factories used 
to employ people to 
do repetitive assembly 
tasks that are today car-
ried out by computer-
controlled robots, oper-
ated by a few people 
who know how to work 
with those computers. 
Books, music, and mov-
ies nowadays are often 
consumed on comput-
ers, and computers are 
almost always involved 
in their production. The book that you 
are reading right now could not have 

been written without computers.
Knowing about computers and 

how to program them has become an 
essential skill in many careers. Engi-
neers design computer-controlled cars 
and medical equipment that preserve 
lives. Computer scientists develop 
programs that help people come 
together to support social causes. For 
example, activists used social net-
works to share videos showing abuse 
by repressive regimes, and this infor-
mation was instrumental in changing 
public opinion.

As computers, large and small, 
become ever more embedded in 
our everyday lives, it is increasingly 
important for everyone to understand 
how they work, and how to work with 
them. As you use this book to learn 
how to program a computer, you will 
develop a good understanding of com-
puting fundamentals that will make 
you a more informed citizen and, per-
haps, a computing professional.

   

1.3  Machine Code and Programming Languages
On the most basic level, computer instructions are extremely primitive. The proces-
sor executes machine instructions. A typical sequence of machine instructions is

1.	Move the contents of memory location 40000 into the CPU.
2.	If that value is greater than 100, continue with the instruction that is stored in 

memory location 11280.

© Mishella/Dreamstime.com.

© Maurice Savage/Alamy Stock Photo.

This transit card contains a computer.

© UPPA/Photoshot.

Figure 4  The ENIAC
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Actually, machine instructions are encoded as numbers so that they can be stored in 
memory. On a Pentium processor, this sequence of instruction is encoded as the 
sequence of numbers

161 40000 45 100 127 11280

On a processor from a different manufacturer, the encoding would be different. 
When this kind of processor fetches this sequence of numbers, it decodes them and 
executes the associated sequence of commands.

How can we communicate the command sequence to the computer? The simplest 
method is to place the actual numbers into the computer memory. This is, in fact, 
how the very earliest computers worked. However, a long program is composed of 
thousands of individual commands, and it is a tedious and error-prone affair to look 
up the numeric codes for all commands and place the codes manually into memory. 
As already mentioned, computers are really good at automating tedious and error-
prone activities. It did not take long for computer scientists to realize that the com-
puters themselves could be harnessed to help in the programming process.

Computer scientists devised high-level programming languages that allow pro-
grammers to describe tasks, using a syntax that is more closely related to the prob-
lems to be solved. In this book, we will use the C++ programming language, which 
was developed by Bjarne Stroustrup in the 1980s. 

Over the years, C++ has grown 
by the addition of many features. A 
standardization process culminated 
in the publication of the interna-
tional C++ standard in 1998. A 
minor update to the standard was 
issued in 2003. A major revision 
came to fruition in 2011, followed 
by updates in 2014 and 2017. At this 
time, C++ is the most commonly 
used language for developing system 
software such as databases and oper-
ating systems. Just as importantly, 
C++ is commonly used for program
ming “embedded systems”, comput-
ers that control devices such as auto-
mobile engines or robots.

Here is a typical statement in C++:
if (int_rate > 100) { cout << "Interest rate error"; }

This means, “If the interest rate is over 100, display an error message”. A special com-
puter program, a compiler, translates this high-level description into machine 
instructions for a particular processor. 

High-level languages are independent of the underlying hardware. C++ instruc-
tions work equally well on an Intel Pentium and a processor in a cell phone. Of 
course, the compiler-generated machine instructions are different, but the program-
mer who uses the compiler need not worry about these differences.

Computer programs 
are stored as 
machine instructions 
in a code that 
depends on the 
processor type. 

© Courtesy of Bjarne Stroustrup.

Bjarne Stroustrup

C++ is a general-
purpose language 
that is in widespread 
use for systems  
and embedded 
programming.

High-level 
programming 
languages are 
independent of  
the processor.
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Computing & Society 1.2  Standards Organizations

Two standards orga-
nizations, the Ameri-

can National Standards Institute (ANSI) 
and the International Organization 
for Standardization (ISO), have jointly 
developed the definitive standard for 
the C++ language.

Why have standards? You encounter 
the benefits of standardization every 
day. When you buy a light bulb, you 
can be assured that it fits in the socket 
without having to measure the socket 
at home and the bulb in the store. In 
fact, you may have experienced how 

painful the lack of standards can be if 
you have ever purchased a flashlight 
with nonstandard bulbs. Replacement 
bulbs for such a flashlight can be dif-
ficult and expensive to obtain. 

The ANSI and ISO standards organi
zations are associations of industry 
professionals who develop standards 
for everything from car tires and 
credit card shapes to programming 
languages. Having a standard for a 
programming language such as C++ 
means that you can take a program 
that you developed on one system 

with one manufacturer’s compiler to a 
different system and be assured that it 
will continue to work.

© Denis Vorob’yev/iStockphoto.

  

1.4  Becoming Familiar with Your  
Programming Environment

Many students find that the tools they need as programmers are very different from 
the software with which they are familiar. You should spend some time making your-
self familiar with your programming environment. Because computer systems vary 
widely, this book can give only an outline of the steps you need to follow. It is a good 
idea to participate in a hands-on lab, or to ask a knowledgeable friend to give you a 
tour.

Step 1  Start the C++ development environment.

Computer systems differ greatly in this regard. On many computers there is an inte-
grated development environment in which you can write and test your programs. 
On other computers you first launch an editor, a program that functions like a word 
processor, in which you can enter your C++ instructions; then open a console window 
and type commands to execute your program. Other programming environments 
are online. In such an environment, you write programs in a web browser. The pro-
grams are then executed on a remote machine, and the results are displayed in the web 
browser window. You need to find out how to get started with your environment.

Step 2	 Write a simple program.

The traditional choice for the very first program in a new programming language is 
a program that displays a simple greeting: “Hello, World!”. Let us follow that tradi-
tion. Here is the “Hello, World!” program in C++:

#include <iostream>
  
using namespace std;
  
int main()
{

© Mishella/Dreamstime.com.

Set aside some time  
to become 
familiar with the 
programming 
environment that you 
will use for your  
class work. 
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   cout << "Hello, World!" << endl;
   return 0;
}

We will examine this program in the next section. 
No matter which programming environment you use, you begin your activity by 

typing the program statements into an editor window. 
Create a new file and call it hello.cpp, using the steps that are appropriate for your 

environment. (If your environment requires that you supply a project name in addi-
tion to the file name, use the name hello for the project.)  Enter the program instruc-
tions exactly as they are given above. Alternatively, locate an electronic copy of the 
program in the source files for this book and paste it into your editor. (You can down-
load the full set of files for this book from its companion site at wiley.com/go/bclo3.)

As you write this program, pay careful attention to the various symbols, and keep 
in mind that C++ is case sensitive. You must enter upper- and lowercase letters 
exactly as they appear in the program listing. You cannot type MAIN or Endl. If you are 
not careful, you will run into problems—see Common Error 1.2. 

Step 3	 Compile and run the program.

The process for building and running a C++ program depends greatly on your pro-
gramming environment. In some integrated development environments, you simply 
push a button. In other environments, you may have to type commands. When you 
run the test program, the message

Hello, World!

will appear somewhere on the screen (see Figures 5 and 6).

An editor is a 
program for entering 
and modifying 
text, such as a C++ 
program. 

C++ is case sensitive. 
You must be careful 
about distinguishing 
between upper- and 
lowercase letters.

The compiler 
translates C++ 
programs into 
machine code.

Figure 5  Running the hello Program in an Integrated Development Environment
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Figure 6  Compiling and Running the hello Program in a Console Window

It is useful to know what goes on behind the scenes when your program gets built. 
First, the compiler translates the C++ source code (that is, the statements that you 
wrote) into machine instructions. The machine code contains only the translation of 
the code that you wrote. That is not enough to actually run the program. To display a 
string on a window, quite a bit of low-level activity is necessary. The implementors of 
your C++ development environment provided a library that includes the definition 
of cout and its functionality. A library is a collection of code that has been pro
grammed and translated by someone else, ready for you to use in your program. 
(More complicated programs are built from more than one machine code file and 
more than one library.) A program called the linker takes your machine code and the 
necessary parts from the C++ library and builds an executable file. (Figure 7 gives an 
overview of these steps.) The executable file is usually called hello.exe or hello, 
depending on your computer system. You can run the executable program even after 
you exit the C++ development environment. 

Step 4	 Organize your work.

As a programmer, you write programs, try them out, and improve them. You store 
your programs in files. Files have names, and the rules for legal names differ from 
one system to another. Some systems allow spaces in file names; others don’t. Some 
distinguish between upper- and lowercase letters; others don’t. Most C++ compilers 
require that C++ files end in an extension .cpp, .cxx, .cc, or .C; for example, demo.cpp. 

The linker combines 
machine code with 
library code into an 
executable program.

CompilerEditor Linker

Executable
ProgramSource File

Library �les

Machine code

Figure 7  From Source Code to Executable Program




